留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

地下煤火火源探测研究

邓军 屈高阳 任帅京 王伟峰 王彩萍 王津睿

邓军,屈高阳,任帅京,等. 地下煤火火源探测研究[J]. 工矿自动化,2023,49(6):68-77.  doi: 10.13272/j.issn.1671-251x.18096
引用本文: 邓军,屈高阳,任帅京,等. 地下煤火火源探测研究[J]. 工矿自动化,2023,49(6):68-77.  doi: 10.13272/j.issn.1671-251x.18096
DENG Jun, QU Gaoyang, REN Shuaijing, et al. Research on underground coal fire source detection[J]. Journal of Mine Automation,2023,49(6):68-77.  doi: 10.13272/j.issn.1671-251x.18096
Citation: DENG Jun, QU Gaoyang, REN Shuaijing, et al. Research on underground coal fire source detection[J]. Journal of Mine Automation,2023,49(6):68-77.  doi: 10.13272/j.issn.1671-251x.18096

地下煤火火源探测研究

doi: 10.13272/j.issn.1671-251x.18096
基金项目: 国家自然科学基金资助项目(52074215,52204239);陕西省自然科学基础研究计划资助项目(2022JQ-517);博士后科学基金资助项目(2022M722557)。
详细信息
    作者简介:

    邓军(1970—),男,四川大竹人,教授,博士,博士研究生导师,主要研究方向为煤火灾害防治研究,E-mail:dengj518@xust.edu.cn

  • 中图分类号: TD75

Research on underground coal fire source detection

  • 摘要: 介绍了煤火的演化发展过程及煤火的特点,阐述了按照探测器空间位置不同划分的4层空间探测技术,即地下探测法、地表探测法、航空探测法及航天探测法的探测机理及研究进展,分析了上述4种探测技术的优缺点。指出现有研究存在的问题:① 探测精度不足,获取范围难以精准圈定。② 探测技术落后,火区高温点精准探测困难。③ 探测手段单一,无法准确判断地下煤火燃烧具体信息。针对地下煤火呈现出隐蔽性、耦合性、复杂性等新特点,提出了地下煤火火源探测技术发展方向:① 对探测仪器数据进行精细化处理,提高磁性差对温度的灵敏度、电阻率法的检测精度、红外探测法的特征提取率及结果精度。② 将高新设备应用于煤火探测技术。③ 完善多层级探测技术的协同利用。首先通过第4层级航天遥感技术进行大规模的火区探测,得到地下煤火异常的基本空间分布特征;然后通过第3层级航空遥感探测技术进一步探测,得到具体的地下煤火空间分布;最后通过第2和第1层级的地表探测技术及地下探测技术进行补充和验证,得到更加详细的煤田火区高温点分布。④ 形成对煤田火区的三维可视化、动态化监测与预警。针对4种不同层级探测技术的数据进行三维反演、联合反演成像,根据成像结果,对煤火发展蔓延进行可视化监测预警,实现地下煤火灾害主动防控。

     

  • 表  1  地下煤火探测技术对比

    Table  1.   Comparison of underground coal fire detection technoloies

    空间方法原理优点缺点
    地下探测法 钻孔指标气体分析法 煤在燃烧的不同阶段产生的气体种类和浓度不同 成本效益高,不受地形限制 气体会随着裂隙往上漂移,导致定位有偏差
    钻孔测温法 在火烧区地表钻探取芯测温 可以直接靠近火源探测温度 成本高昂,不能完成火区大比例尺填图
    地表探测法 地面温度测量法 根据地表探测的温度推断火区的着火范围及发展趋势 对浅埋煤层的煤田火区探查效果好 易受通风和环境条件的影响,如太阳辐射、风和降水
    电阻率法 比较未发火区和发火区电阻值的差异 操作简单方便 受大地杂散电流干扰大
    磁法探测 岩石经高温烧变后铁磁物质磁性变化 抗干扰性好,经济适用性强 探测深度有限,分辨率不够高
    自然电位法 煤层燃烧引起自然电位异常 结果可靠,简单易操作 多热解温度与非高温情况不适用
    瞬变电磁法 根据观测地下介质感应产生的二次场进行高温点探测 对阻值异常区有较强的分辨力 抗干扰能力差
    地质雷达探测 高频电磁波在介质分界面会产生反射 操作简单方便快捷 探测深度有限
    测氡法 测量地表的氡含量反推地下煤火温度 操作简单灵活 受到埋深、火区上覆岩层性质、地表大气流动、地层水分含量的影响
    电磁辐射法 基于煤体温度与电磁辐射信号强度的相关性 非接触,无需钻孔 信号的作用机制尚处于研究阶段
    航空探测法 航空热红外遥感探测 以航空器为载体,探测煤田火区表面植被或岩石辐射的特性差异信息 节省时间,与煤火有关的信息丰富 热红外波段分辨率较低,对红外信息不能很好的反映
    航空多光谱遥感探测 以航空器为载体,利用波谱曲线和波段之间波谱特征的差异提取相关的热信息 探测时间短,可大面积探测煤田火区 易受太阳辐射、坡向、坡度和其他热源的影响
    航空高光谱遥感探测 用窄而连续的光谱通道持续对地面遥感成像 操作简单方便,节省时间 空间分辨率较低,对小块煤火显示误差较大
    航天探测法 航天热红外与高分辨率遥感探测 结合地表温度、风力等地质信息,通过星载热红外与高分辨率遥感查看煤火燃烧痕迹和现象 成本效益高,节省时间,准确性好 采集的光谱信息有限
    航天多光谱遥感探测 以航天器为载体,利用波谱曲线和波段之间波谱特征的差异提取相关的热信息 能够有效探测大规模煤火 易受太阳辐射、坡向、坡度及其他热源的影响
    下载: 导出CSV
  • [1] 王双明,申艳军,孙强,等. “双碳”目标下煤炭开采扰动空间CO2地下封存途径与技术难题探索[J]. 煤炭学报,2022,47(1):45-60.

    WANG Shuangming,SHEN Yanjun,SUN Qiang,et al. Underground CO2 storage and technical problems in coal mining area under the "dual carbon" target[J]. Journal of China Coal Society,2022,47(1):45-60.
    [2] 郭军,蔡国斌,郑学召,等. 矿井热动力灾害及救援安全性判定研究现状及展望[J]. 煤炭科学技术,2020,48(12):116-122.

    GUO Jun,CAI Guobin,ZHENG Xuezhao,et al. Research status and prospect of mine thermal disaster and rescue safety judgement[J]. Coal Science and Technology,2020,48(12):116-122.
    [3] MISHRA R K,ROY P N S,SINGH V K,et al. Detection and delineation of coal mine fire in Jharia coal field,India using geophysical approach:a case study[J]. Journal of Earth System Science,2018,127(8):107. doi: 10.1007/s12040-018-1010-8
    [4] 朱红青,袁杰,赵金龙,等. 地下煤火分布及探测技术现状研究[J]. 工业安全与环保,2019,45(12):28-32.

    ZHU Hongqing,YUAN Jie,ZHAO Jinlong,et al. Research on the status of underground coal fire distribution and development of the detection technology[J]. Industrial Safety and Environmental Protection,2019,45(12):28-32.
    [5] 包兴东. 新疆第五次煤田火区普查成果分析[J]. 能源与环保,2021,43(2):1-4.

    BAO Xingdong. Analysis on results of the fifth coalfield fire area survey in Xinjiang[J]. China Energy and Environmental Protection,2021,43(2):1-4.
    [6] 贺强. 双碳目标下我国西部地区地下煤火探测技术研究进展[J]. 中国煤炭地质,2022,34(4):8-13. doi: 10.3969/j.issn.1674-1803.2022.04.03

    HE Qiang. Research progress of underground coal fire detection technology in western China under carbon peaking and carbon neutrality goals[J]. Coal Geology of China,2022,34(4):8-13. doi: 10.3969/j.issn.1674-1803.2022.04.03
    [7] 王伟. 煤田火灾探测与治理技术现状及发展趋势[J]. 煤矿安全,2020,51(11):206-209,215.

    WANG Wei. Current situation and development trend for coalfield fire exploration and governance technology[J]. Safety in Coal Mines,2020,51(11):206-209,215.
    [8] 林柏泉,李庆钊,周延. 煤矿采空区瓦斯与煤自燃复合热动力灾害多场演化研究进展[J]. 煤炭学报,2021,46(6):1715-1726.

    LIN Baiquan,LI Qingzhao,ZHOU Yan. Research advances about multi-field evolution of coupled thermodynamic disasters in coal mine goaf[J]. Journal of China Coal Society,2021,46(6):1715-1726.
    [9] ONIFADE M,GENC B. Spontaneous combustion of coals and coal-shales[J]. International Journal of Mining Science and Technology,2018,28(6):933-940. doi: 10.1016/j.ijmst.2018.05.013
    [10] 王德明,辛海会,戚绪尧,等. 煤自燃中的各种基元反应及相互关系:煤氧化动力学理论及应用[J]. 煤炭学报,2014,39(8):1667-1674. doi: 10.13225/j.cnki.jccs.2014.9017

    WANG Deming,XIN Haihui,QI Xuyao,et al. Mechanism and relationships of elementary reactions in spontaneous combustionof coal:the coal oxidation kinetics theory and application[J]. Journal of China Coal Society,2014,39(8):1667-1674. doi: 10.13225/j.cnki.jccs.2014.9017
    [11] TANG Zongqing,XU Guang,YANG Shengqiang,et al. Fire-retardant foam designed to control the spontaneous combustion and the fire of coal:flame retardant and extinguishing properties[J]. Powder Technology,2021,384:256-266.
    [12] 苏贺涛. 基于重力热管换热的地下煤火治理与应用研究[D]. 徐州: 中国矿业大学, 2018.

    SU Hetao. Study on underground coal fire control and application based on heat transfer using a gravity assisted heat pipe[D]. Xuzhou: China University of Mining and Technology, 2018.
    [13] 肖旸. 煤田火区煤岩体裂隙渗流的热−流−固多场耦合力学研究特性[D]. 西安: 西安科技大学, 2013.

    XIAO Yang. Study on the mechanical characteristics of coal-rock mass of coalfield fires with thermo-hydro-mechanical coupling for fissure seepage[D]. Xi'an: Xi'an University of Science and Technology, 2013.
    [14] 武建军,蒋卫国,刘晓晨,等. 地下煤火探测、监测与灭火技术研究进展[J]. 煤炭学报,2009,34(12):1669-1674. doi: 10.3321/j.issn:0253-9993.2009.12.016

    WU Jianjun,JIANG Weiguo,LIU Xiaochen,et al. Innovative technologies for exploration,monitoring and extinction of underground coal fires[J]. Journal of China Coal Society,2009,34(12):1669-1674. doi: 10.3321/j.issn:0253-9993.2009.12.016
    [15] 郭刚,贾继标,黄丹青,等. 鄂尔多斯浅层煤矿煤火区探测方法[J]. 煤矿安全,2013,44(9):137-139. doi: 10.13347/j.cnki.mkaq.2013.09.046

    GUO Gang,JIA Jibiao,HUANG Danqing,et al. Fire area detection method of shallow coal mine in Ordos[J]. Safety in Coal Mines,2013,44(9):137-139. doi: 10.13347/j.cnki.mkaq.2013.09.046
    [16] 齐福辉,张福英. 地下煤火的探测及防治[J]. 中国煤炭地质,2010,22(增刊1):143-146.

    QI Fuhui,ZHANG Fuying. Detection and controlling of underground coal burning[J]. Coal Geology of China,2010,22(S1):143-146.
    [17] SONG Zeyang,KUENZER C. Coal fires in China over the last decade:a comprehensive review[J]. International Journal of Coal Geology,2014,133:72-99. doi: 10.1016/j.coal.2014.09.004
    [18] 梁运涛,罗海珠. 中国煤矿火灾防治技术现状与趋势[J]. 煤炭学报,2008,33(2):126-130. doi: 10.3321/j.issn:0253-9993.2008.02.002

    LIANG Yuntao,LUO Haizhu. Current situation and development trend for coal mine fire prevention & extinguishing techniques in China[J]. Journal of China Coal Society,2008,33(2):126-130. doi: 10.3321/j.issn:0253-9993.2008.02.002
    [19] GUO Jun,WEN Hu,ZHENG Xuezhao,et al. A method for evaluating the spontaneous combustion of coal by monitoring various gases[J]. Transactions of the Insitution of Chemical Engineers,2019,126:223-231.
    [20] LI Zongxiang,ZHANG Mingqian,YANG Zhibin,et al. Division of coal spontaneous combustion stages and selection of indicator gases[J]. Plos One,2022,17(4):1-13.
    [21] 李文华. 煤田钻孔测温中几个问题初探[J]. 煤田地质与勘探,1984,12(3):60-62.

    LI Wenhua. Discussion on some problems in borehole temperature measurement in coal field[J]. Coal Geology & Exploration,1984,12(3):60-62.
    [22] 王彩波,李德增. 高速公路下伏自燃采空区路基煤火热传递数值分析[J]. 土工基础,2022,36(6):952-955,968.

    WANG Caibo,LI Dezeng. Numerical analysis of thermal transfer of coal fire distribution in unfilled abandon mine underlying an expressway[J]. Soil Engineering and Foundation,2022,36(6):952-955,968.
    [23] 张青松. 复合埋深条件下煤自燃火源范围探测技术[J]. 煤炭技术,2014,33(7):270-271. doi: 10.13301/j.cnki.ct.2014.07.102

    ZHANG Qingsong. Fire detection technology of coal spantaneous combustion scope location based on compound mining depth coal seam[J]. Coal Technology,2014,33(7):270-271. doi: 10.13301/j.cnki.ct.2014.07.102
    [24] DU Bin,LIANG Yuntao,TIAN Fuchao. Detecting concealed fire sources in coalfield fires:an application study[J]. Fire Safety Journal,2021,121. DOI: 10.1016/J.FIRESAF.2021.103298.
    [25] 李光宇. 矿井火与地表火共存型煤田火区浅部封堵治理技术研究[D]. 徐州: 中国矿业大学, 2018.

    LI Guangyu. Study on the shallow sealing method of mine fire and surface fire coexisting areas[D]. Xuzhou: China University of Mining and Technology, 2018.
    [26] KUENZER C, ZHAGN Jianzhong, HIRNER A, et al. Multitemporal in-situ mapping of the Wuda coal fires from 2000 to 2005 assessing coal fire dynamics[M]. Beijing: Tsinghua University Press, 2008.
    [27] ZHAGN Jianzhong,KUENZER C. Thermal surface characteristics of coal fires 1 results of in-situ measurements[J]. Journal of Applied Geophysics,2007,63(3/4):117-134.
    [28] SHAO Zhenlu,WANG Deming,WANG Yanming,et al. Electrical resistivity of coal-bearing rocks under high temperature and the detection of coal fires using electrical resistance tomography[J]. Geophysical Journal International,2015,204(2):1316-1331.
    [29] SONG Wujun,WANG Yanming,SHAO Zhenlu. Categorical modeling on electrical anomaly of room-and-pillar coal mine fires and application for field electrical resistivity tomography[J]. Journal of Applied Geophysics,2017,136:474-483. doi: 10.1016/j.jappgeo.2016.11.023
    [30] 邵振鲁,王德明,王雁鸣. 高密度电法探测煤火的模拟及应用研究[J]. 采矿与安全工程学报,2013,30(3):468-474.

    SHAO Zhenlu,WANG Deming,WANG Yanming. Simulation of high-density electrical method in detecting coal fires and its application[J]. Journal of Mining & Safety Engineering,2013,30(3):468-474.
    [31] 张秀山. 磁法探测煤层自燃火区[J]. 煤田地质与勘探,1980,8(6):43-48.

    ZHANG Xiushan. Detection of coal seam spontaneous combustion area by magnetic method[J]. Coal Geology & Exploration,1980,8(6):43-48.
    [32] 张秀山. 新疆煤田火烧区特征及防治对策[J]. 新疆地质,2001(2):150-152. doi: 10.3969/j.issn.1000-8845.2001.02.018

    ZHANG Xiushan. Countermeasure and characterstic of coalfield burning area in Xinjiang[J]. Xinjiang Geology,2001(2):150-152. doi: 10.3969/j.issn.1000-8845.2001.02.018
    [33] 张秀山. 新疆煤田火烧区特征及灭火问题探讨[J]. 中国煤田地质,2004,16(1):21-24.

    ZHANG Xiushan. Probe into Xinjiang coalfield underground combustion area features and fire-fighting problems[J]. Coal Geology of China,2004,16(1):21-24.
    [34] IDE T S,CROOK N,ORR F M. Magnetometer measurements to characterize a subsurface coal fire[J]. International Journal of Coal Geology,2011,87(3/4):190-196.
    [35] 李经文. 基于煤岩磁性的纳林庙矿煤层隐蔽火灾探测研究[D]. 西安: 西安科技大学, 2020.

    LI Jingwen. Research on concealed fire dectection of coal seam in Nalinmiao Mine based on magnetic property of coal and rock[D]. Xi'an: Xi'an University of Science and Technology, 2020.
    [36] 郭伟红. 温变条件下岩石自然电位及激电特征研究[D]. 徐州: 中国矿业大学, 2021.

    GUO Weihong. Study on spontaneous potential and induced polarization characteristics of rock under temperature change[D]. Xuzhou: China University of Mining and Technology, 2021.
    [37] 邵振鲁. 煤田火灾磁、电异常演变特征及综合探测方法研究[D]. 徐州: 中国矿业大学, 2017.

    SHAO Zhenlu. Magnetic and electrical signature of coal fires and comprehensive detection methodology[D]. Xuzhou: China University of Mining and Technology, 2017.
    [38] 曾凡. 煤田隐蔽火区的瞬变电磁探测方法研究[D]. 长春: 吉林大学, 2022.

    ZENG Fan. Study on detection methodof hidden fire area in coalfield using transient electromagnetics[D]. Changchun: Jilin University, 2022.
    [39] SINGH N P, UTSUGI M, KAGIYAMA T, et al. TEM response of a large loop source over a homogeneous earth model: a generalized expression for arbitrary source-receiver offsets[J]Pure & Applied Geophysics, 2009, 166(12): 2037-2058.
    [40] 邵光强,赵猛超,曹凯. 火区自然发火范围及发展程度的判定方法[J]. 煤矿安全,2012,43(10):181-184. doi: 10.13347/j.cnki.mkaq.2012.10.036

    SHAO Guangqiang,ZHAO Mengchao,CAO Kai. Judgment method of spontaneous combustion range and development degree of fire area[J]. Safety in Coal Mines,2012,43(10):181-184. doi: 10.13347/j.cnki.mkaq.2012.10.036
    [41] 杨峰,彭苏萍,马建伟,等. 乌达煤田地下燃烧状况雷达探测谱分析算法[J]. 煤炭学报,2010,35(5):770-775. doi: 10.13225/j.cnki.jccs.2010.05.001

    YANG Feng,PENG Suping,MA Jianwei,et al. Spectral analysis for ground penetrating radar surveys of the underground coal fire in Wuda Coal Mine[J]. Journal of China Coal Society,2010,35(5):770-775. doi: 10.13225/j.cnki.jccs.2010.05.001
    [42] 刘洪福,白春明,舒祥泽,等. 用测氡技术探测煤矿地下火区的研究[J]. 煤炭学报,1997,22(4):68-71. doi: 10.13225/j.cnki.jccs.1997.04.014

    LIU Hongfu,BAI Chunming,SHU Xiangze,et al. A study of detecting underground fire zone applying radon measuring technology[J]. Journal of China Coal Society,1997,22(4):68-71. doi: 10.13225/j.cnki.jccs.1997.04.014
    [43] 李峰,刘鸿福,张新军,等. 基于分形理论确定地下煤层自燃火区范围[J]. 煤田地质与勘探,2013,41(3):15-17,22. doi: 10.3969/j.issn.1001-1986.2013.03.004

    LI Feng,LIU Hongfu,ZHANG Xinjun,et al. Determination of spontaneous combusion extent in coal seams on the basis of the fractal theory[J]. Coal Geology & Exploration,2013,41(3):15-17,22. doi: 10.3969/j.issn.1001-1986.2013.03.004
    [44] 张玲玲,刘鸿福,张新军,等. 趋势面分析法圈定氡异常[J]. 煤田地质与勘探,2014,42(1):79-82. doi: 10.3969/j.issn.1001-1986.2014.01.019

    ZHANG Lingling,LIU Hongfu,ZHANG Xinjun,et al. Delineating radon anomalies by the trend surface analysis[J]. Coal Geology & Exploration,2014,42(1):79-82. doi: 10.3969/j.issn.1001-1986.2014.01.019
    [45] 张俊英,方熙杨,王海宾,等. 基于同位素测氡的煤矿火区圈划方法对比研究[J]. 中国安全科学学报,2021,31(1):38-44. doi: 10.16265/j.cnki.issn1003-3033.2021.01.006

    ZHANG Junying,FANG Xiyang,WANG Haibin,et al. Comparative study of coal mine fire areas zoning methods based on isotopic radon measurement technique[J]. China Safety Science Journal,2021,31(1):38-44. doi: 10.16265/j.cnki.issn1003-3033.2021.01.006
    [46] WEN Hu,CHENG Xiaojiao,FAN Shixing,et al. A method for detecting hidden fire source in deep mine goafs based on radon measurement and its experimental verification[J]. Applied Geochemistry,2020,117:104603. doi: 10.1016/j.apgeochem.2020.104603
    [47] ZHANG Wei,ZHANG Dongsheng,WU Lixin,et al. On-site radon detection of mining-induced fractures from overlying strata to the surface:a case study of the Baoshan Coal Mine in China[J]. Energies,2014,7(12):8483-8507. doi: 10.3390/en7128483
    [48] KONG Biao,WANG Enyuan,LI Zenghua,et al. Time-varying characteristics of electromagnetic radiation during the coal-heating process[J]. International Journal of Heat and Mass Transfer,2017,108:434-442. doi: 10.1016/j.ijheatmasstransfer.2016.12.043
    [49] KONG Biao,LI Zenghua,WANG Enyuan,et al. An experimental study for characterization the process of coal oxidation and spontaneous combustion by electromagnetic radiation technique[J]. Process Safety and Environmental Protection,2018,119:285-294. doi: 10.1016/j.psep.2018.08.002
    [50] KONG Biao,LIU Zhen,YAO Qingguo. Study on the electromagnetic spectrum characteristics of underground coal fire hazardous and the detection criteria of high temperature anomaly area[J]. Environmental Earth Sciences,2021,80(3):88-99. doi: 10.1007/s12665-020-09346-z
    [51] KONG Biao,WANG Enyuan,LU Wei,et al. Application of electromagnetic radiation detection in high-temperature anomalous areas experiencing coalfield fires[J]. Energy,2019,189. DOI: 10.1016/j.energy.2019.116144.
    [52] SLAVECKI R J. Detection and location of subsurfacecoal[C]. Proceedings of the 3rd International Symposium on Remote Sensing of Environment, Michigan Institute of and Technology, ScienceMichigan, 1964: 537-547.
    [53] SHAO Zhenlu, LIANG Yuntao, TIAN Fuchao, et al. Constructing 3-D land surface temperature model of local coal fires using UAV thermal images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022. DOI: 10.1109/TGRS.2022.3176854.
    [54] 张雷昕,汪云甲,赵峰,等. 基于无人机热红外遥感的新疆宝安煤矿火区探测[J]. 煤炭工程,2021,53(6):162-166.

    ZHANG Leixin,WANG Yunjia,ZHAO Feng,et al. Detection and analysis of fire area in Xinjiang Baoan Coal Mine based on UAV thermal infrared remote sensing[J]. Coal Engineering,2021,53(6):162-166.
    [55] HE Xiaoyuan,YANG Xingke,LUO Zhen,et al. Application of unmanned aerial vehicle (UAV) thermal infrared remote sensing to identify coal fires in the Huojitu Coal Mine in Shenmu city,China[J]. Scientific Reports,2020,10(1):13895. doi: 10.1038/s41598-020-70964-5
    [56] MCKENNA P,ERSKINE P D,LECHNER A M,et al. Measuring fire severity using UAV imagery in semi-arid central Queensland,Australia[J]. International Journal of Remote Sensing,2017,38(14):4244-4264. doi: 10.1080/01431161.2017.1317942
    [57] 周小虎,林燕. 航空遥感在内蒙古大岭矿区煤火信息提取中的应用[J]. 西北大学学报(自然科学版),2009,39(5):837-840.

    ZHOU Xiaohu,LIN Yan. The application of information extraction of aerial infrared remote sensing images in Daling Coalfield,Inner Mongolia Autonomous Region[J]. Journal of Northwest University(Natural Science Edition),2009,39(5):837-840.
    [58] 杨国防,赵英俊,田新光,等. 大柳塔矿区煤火高光谱热红外定量探测研究[J]. 煤炭工程,2016,48(12):103-106,109.

    YANG Guofang,ZHAO Yingjun,TIAN Xinguang,et al. Coalfield fire quantitative detection in Daliuta mining area based on hyperspectral thermal infrared remote sensing[J]. Coal Engineering,2016,48(12):103-106,109.
    [59] 毛耀保. 宁夏汝箕沟煤田火区高光谱定量遥感探测研究[J]. 国土资源遥感,2010(3):69-75.

    MAO Yaobao. Research on hyperspectral quantitative remote sensing detection of the Rujigou coal fire area in Ningxia[J]. Remote Sensing for Land & Resources,2010(3):69-75.
    [60] 陈云浩,李京,杨波,等. 基于遥感和GIS的煤田火灾监测研究−以宁夏汝箕沟煤田为例[J]. 中国矿业大学学报,2005,34(2):97-101.

    CHEN Yunhao,LI Jing,YANG Bo,et al. Monitoring coal fires based on remotely sensed data and GIS technique in coalfields-a case study of Rujigou coal field in Ningxia,China[J]. Journal of China University of Mining & Technology,2005,34(2):97-101.
    [61] 蒋卫国,武建军,顾磊,等. 基于遥感技术的乌达煤田火区变化监测[J]. 煤炭学报,2010,35(6):964-968. doi: 10.13225/j.cnki.jccs.2010.06.028

    JIANG Weiguo,WU Jianjun,GU Lei,et al. Change monitoring in Wuda coalfield fire area based on remote sensing[J]. Journal of China Coal Society,2010,35(6):964-968. doi: 10.13225/j.cnki.jccs.2010.06.028
    [62] 李峰,梁汉东,赵小平,等. 基于ASTER影像的乌达火区遥感监测研究[J]. 煤矿安全,2016,47(11):15-18. doi: 10.13347/j.cnki.mkaq.2016.11.005

    LI Feng,LIANG Handong,ZHAO Xiaoping,et al. Remote sensing monitoring research on coal fire in Wuda Mine by ASTER images[J]. Safety in Coal Mines,2016,47(11):15-18. doi: 10.13347/j.cnki.mkaq.2016.11.005
    [63] SINGH N,CHATTERJEE R S,KUMAR D,et al. Retrieval of precise land surface temperature from ASTER night-time thermal infrared data by split window algorithm for improved coal fire detection in Jharia coalfield,India[J]. Geocarto International,2020,37,3:926-943.
    [64] BISWAL S S,GORAI A K. Change detection analysis in coverage area of coal fire from 2009 to 2019 in Jharia coalfield using remote sensing data[J]. International Journal of Remote Sensing,2020,41(24):9545-9564. doi: 10.1080/01431161.2020.1800128
    [65] 李如仁,贲忠奇,李品,等. 基于Landsat−8的煤火监测方法研究[J]. 煤炭学报,2016,41(7):1735-1740. doi: 10.13225/j.cnki.jccs.2015.1512

    LI Ruren,BEN Zhongqi,LI Pin,et al. Study on the method of coal fire monitoring based on Landsat-8 data[J]. Journal of China Coal Society,2016,41(7):1735-1740. doi: 10.13225/j.cnki.jccs.2015.1512
    [66] CHEN Xue, PENG Junhuan, SONG Zeyang, et al. Monitoring persistent coal fire using landsat time series data from 1986 to 2020[J]. IEEE Transactions on Geoscience Remote Sensing, 2022. DOI: 10.1109/TGRS.2022.3142350.
    [67] XIA Qing,HU Zhenqi. A novel method to monitor coal fires based on multi-spectral landsat images[J]. Spectroscopy Spectral Analysis,2016,36(8):2712-2720.
  • 加载中
表(1)
计量
  • 文章访问数:  818
  • HTML全文浏览量:  49
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-03
  • 修回日期:  2023-05-15
  • 网络出版日期:  2023-05-15

目录

    /

    返回文章
    返回