留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于双注意力生成对抗网络的煤流异物智能检测方法

曹正远 蒋伟 方成辉

曹正远,蒋伟,方成辉. 基于双注意力生成对抗网络的煤流异物智能检测方法[J]. 工矿自动化,2023,49(12):56-62.  doi: 10.13272/j.issn.1671-251x.18094
引用本文: 曹正远,蒋伟,方成辉. 基于双注意力生成对抗网络的煤流异物智能检测方法[J]. 工矿自动化,2023,49(12):56-62.  doi: 10.13272/j.issn.1671-251x.18094
CAO Zhengyuan, JIANG Wei, FANG Chenghui. Intelligent detection method for coal flow foreign objects based on dual attention generative adversarial network[J]. Journal of Mine Automation,2023,49(12):56-62.  doi: 10.13272/j.issn.1671-251x.18094
Citation: CAO Zhengyuan, JIANG Wei, FANG Chenghui. Intelligent detection method for coal flow foreign objects based on dual attention generative adversarial network[J]. Journal of Mine Automation,2023,49(12):56-62.  doi: 10.13272/j.issn.1671-251x.18094

基于双注意力生成对抗网络的煤流异物智能检测方法

doi: 10.13272/j.issn.1671-251x.18094
基金项目: 天地(常州)自动化股份有限公司科研项目(2022FY0009)。
详细信息
    作者简介:

    曹正远(1984—),男,内蒙古鄂尔多斯人,工程师,主要研究方向为煤矿智能化,E-mail:10028702@chnenergy.com.cn

  • 中图分类号: TD528

Intelligent detection method for coal flow foreign objects based on dual attention generative adversarial network

  • 摘要:

    在煤炭开采过程中混入的异物可能会导致输送带连接处堵塞甚至输送带撕裂等事故,现有的机器学习算法大多采用监督学习的方式自动识别物品类别,而在真实工矿场景下,异常样本稀缺,易导致建模数据集存在严重的样本分布不平衡且显著特征丢失的问题。针对上述问题,提出了一种基于双注意力生成对抗网络(DA−GANomaly)的煤流异物智能检测方法。该方法采用半监督学习的方式,仅需要正常样本完成异物检测模型训练,有效解决了因样本分布不平衡造成的识别精度低、鲁棒性差的问题;在Skip−GANomaly的基础上引入双注意力机制,增强了编码器与解码器之间的信息交流,以抑制无关特征和噪声,同时突出有利于区分异常样本的感兴趣特征,进一步提高模型分类的准确性。实验结果表明:DA−GANomaly模型的分类精确率为79.5%,召回率为83.2%,精确率−召回率曲线下面积(AUPRC)为85.1%;与AnoGAN等5种经典异常检测模型相比,DA−GANomaly模型的综合性能最佳。

     

  • 图  1  基于DA−GANomaly的煤流异物智能检测模型

    Figure  1.  Intelligent detection model for coal flow foreign objects based on DA-GANomaly

    图  2  双注意力机制

    Figure  2.  Dual attention mechanism

    图  3  部分异常样本

    Figure  3.  Partial abnormal samples

    图  4  6种模型的PRC

    Figure  4.  Precision recall curves of 6 models

    图  5  DA−GANomaly模型的异常分数分布直方图

    Figure  5.  Histogram of abnormal fraction distribution of DA-GANomaly model

    图  6  异物识别结果

    Figure  6.  Foreign object recognition results

    表  1  生成器网络参数

    Table  1.   Generator network parameters

    网络层级 M1 M2 M3 M4 M5 M6 N1 N2 N3 N4 N5 N6
    卷积核尺寸 4×4 4×4 4×4 4×4 4×4 4×4 4×4 4×4 4×4 4×4 4×4 4×4
    输出特征维度 64 128 256 512 512 512 512 512 256 128 64 3
    输出特征图尺寸 32×32 16×16 8×8 4×4 2×2 1×1 2×2 4×4 8×8 16×16 32×32 64×64
    下载: 导出CSV

    表  2  判别器网络参数

    Table  2.   Discriminator network parameters

    网络层级 Q1 Q2 Q3 Q4 Q5 Q6
    卷积核尺寸 4×4 4×4 4×4 4×4 4×4 4×4
    输出特征维度 64 128 256 512 512 100
    输出特征图尺寸 32×32 16×16 8×8 4×4 2×2 1×1
    下载: 导出CSV

    表  3  数据集划分

    Table  3.   Dataset partitioning

    数据类型训练集样本数/张测试集样本数/张
    正样本14 000600
    负样本0107
    总体样本14 000707
    下载: 导出CSV

    表  4  不同模型实验结果对比

    Table  4.   Comparison of experimental results of different models

    模型 AUPRC/% 精确率/% 召回率/%
    AnoGAN[10] 36.2 22.3 52.3
    EGBAD[15] 54.5 42.0 61.6
    GANomaly[11] 69.9 51.5 82.2
    ALAD[16] 75.56 55.7 77.5
    Skip−GANomaly[12] 82.1 55.4 79.4
    DA−GANomaly 85.1 79.5 83.2
    下载: 导出CSV

    表  5  模型实时性测试结果

    Table  5.   Real time test results of the model

    每秒浮点计算数/109 模型参数量/106 单帧计算时间/ms 每秒计算帧数
    5.30 32.8 7.2 138
    下载: 导出CSV
  • [1] 程德强,徐进洋,寇旗旗,等. 融合残差信息轻量级网络的运煤皮带异物分类[J]. 煤炭学报,2022,47(3):1361-1369.

    CHENG Deqiang,XU Jinyang,KOU Qiqi,et al. Lightweight network based on residual information for foreign body classification on coal conveyor belt[J]. Journal of China Coal Society,2022,47(3):1361-1369.
    [2] 孟晓娟,张月琴,郝晓丽,等. 多分类深度卷积生成对抗网络的皮带撕裂检测[J]. 计算机工程与应用,2021,57(16):269-275.

    MENG Xiaojuan,ZHANG Yueqin,HAO Xiaoli,et al. Multi-class deep convolutional generative adversarial networks for belt tear detection[J]. Computer Engineering and Applications,2021,57(16):269-275.
    [3] RONG Dian,XIE Lijuan,YING Yibin. Computer vision detection of foreign objects in walnuts using deep learning[J]. Computers and Electronics in Agriculture,2019,162:1001-1010. doi: 10.1016/j.compag.2019.05.019
    [4] 王卫东,张康辉,吕子奇,等. 基于深度学习的煤中异物机器视觉检测[J]. 矿业科学学报,2021,6(1):115-123.

    WANG Weidong,ZHANG Kanghui,LYU Ziqi,et al. Machine vision detection of foreign objects in coal using deep learning[J]. Journal of Mining Science and Technology,2021,6(1):115-123.
    [5] 王超,郝博南,张立亚,等. 基于RetinaNet的煤矿井下输送带异物检测技术[J]. 煤矿机械,2022,43(12):180-183.

    WANG Chao,HAO Bonan,ZHANG Liya,et al. Conveyor belt foreign object detection technology based on RetinaNet in underground coal mine[J]. Coal Mine Machinery,2022,43(12):180-183.
    [6] 王燕,郭潇樯,刘新华. 带式输送机大块异物视觉检测系统设计[J]. 机械科学与技术,2021,40(12):1939-1943.

    WANG Yan,GUO Xiaoqiang,LIU Xinhua. Design of visual detection system for large foreign body in belt conveyor[J]. Mechanical Science and Technology for Aerospace Engineering,2021,40(12):1939-1943.
    [7] 薛旭升,杨星云,齐广浩,等. 煤矿带式输送机分拣机器人异物识别与定位系统设计[J]. 工矿自动化,2022,48(12):33-41. doi: 10.13272/j.issn.1671-251x.2022100024

    XUE Xusheng,YANG Xingyun,QI Guanghao,et al. Design of foreign object recognition and positioning system for sorting robot of coal mine belt conveyor[J]. Journal of Mine Automation,2022,48(12):33-41. doi: 10.13272/j.issn.1671-251x.2022100024
    [8] 郝帅,张旭,马旭,等. 基于CBAM−YOLOv5的煤矿输送带异物检测[J]. 煤炭学报,2022,47(11):4147-4156.

    HAO Shuai,ZHANG Xu,MA Xu,et al. Foreign object detection in coal mine conveyor belt based on CBAM-YOLOv5[J]. Journal of China Coal Society,2022,47(11):4147-4156.
    [9] 武红鑫,韩萌,陈志强,等. 监督和半监督学习下的多标签分类综述[J]. 计算机科学,2022,49(8):12-25.

    WU Hongxin,HAN Meng,CHEN Zhiqiang,et al. Survey of multi-label classification based on supervised and semi-supervised learning[J]. Computer Science,2022,49(8):12-25.
    [10] SCHLEGL T,SEEBÖCK P,WALDSTEIN S M,et al. Unsupervised anomaly detection with generative adversarial networks to guide marker discovery[C].25th International Conference on Information Processing in Medical Imaging,Boone,2017:146-157.
    [11] AKCAY S,ATAPOUR-ABARGHOUEI A,BRECKON T P. GANomaly:semi-supervised anomaly detection via adversarial training[C].14th Asian Conference on Computer Vision,Perth,2018:622-637.
    [12] AKÇAY S,ATAPOUR-ABARGHOUEI A,BRECKON T P. Skip-GANomaly:skip connected and adversarially trained encoder-decoder anomaly detection[C].International Joint Conference on Neural Networks,Budapest,2019:1-8.
    [13] RONNEBERGER O,FISCHER P,BROX T. U-net:convolutional networks for biomedical image segmentation[C].18th International Conference on Medical Image Computing and Computer-Assisted Intervention,Munich,2015:234-241.
    [14] 杜京义,陈瑞,郝乐,等. 煤矿带式输送机异物检测[J]. 工矿自动化,2021,47(8):77-83.

    DU Jingyi,CHEN Rui,HAO Le,et al. Coal mine belt conveyor foreign object detection[J]. Industry and Mine Automation,2021,47(8):77-83.
    [15] 王涛. 机器视觉技术在煤矿胶带运输系统中的应用[J]. 能源科技,2021,19(2):34-40.

    WANG Tao. Application of the machine vision technology in the belt conveyor system for coal mines[J]. Energy Science and Technology,2021,19(2):34-40.
    [16] GUO Menghao,XU Tianxing,LIU Jiangjiang,et al. Attention mechanisms in computer vision:a survey[J]. Computational Visual Media,2022(3):331-368.
    [17] RAMACHANDRAN P,PARMAR N,VASWANI A,et al. Stand-alone self-attention in vision models[EB/OL]. [2023-03-22].https://arxiv.org/abs/1906.05909.
    [18] FU Jun,LIU Jing,TIAN Haijie,et al. Dual attention network for scene segmentation[C].IEEE/CVF Conference on Computer Vision and Pattern Recognition,Salt Lake City,2019:3146-3154.
    [19] ZOU Liang,YU Xinhui,LI Ming,et al. Nondestructive identification of coal and gangue via near-infrared spectroscopy based on improved broad learning[J]. IEEE Transactions on Instrumentation and Measurement,2020,69(10):8043-8052.
    [20] ZENATI H,FOO C S,LECOUAT B,et al. Efficient GAN-based anomaly detection[EB/OL]. [2023-03-22].https://arxiv.org/abs/1802.06222v1.
    [21] ZENATI H,ROMAIN M,FOO C S,et al. Adversarially learned anomaly detection[C].IEEE International Conference on Data Mining,Singapore,2018:727-736.
  • 加载中
图(6) / 表(5)
计量
  • 文章访问数:  138
  • HTML全文浏览量:  115
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-27
  • 修回日期:  2023-12-18
  • 网络出版日期:  2024-01-03

目录

    /

    返回文章
    返回