Analysis and testing of wireless transmission attenuation in coal mine underground and research on the optimal operating frequency band
-
摘要: 5G,UWB,ZigBee,WiFi6等矿井移动通信、人员及车辆定位、无线传输等技术在煤矿井下应用,促进了煤矿安全生产和煤矿智能化建设。然而受电气防爆的限制,煤矿井下无线发射功率不大于6 W,制约着矿井无线传输距离,增加了基站用量和系统成本,不便于系统使用和维护。在无线发射功率受电气防爆限制的条件下,选择传输衰减较小的无线工作频段,可有效提高无线传输距离,减小基站用量和系统成本。为满足矿井无线传输工作频段选择与优化的需求,在国家能源集团国神公司三道沟煤矿的辅助运输大巷和综采工作面分别进行了700 MHz~6 GHz频段的无线传输测试,并对测试结果进行了分析,提出了矿井无线传输优选频段:① 辅助运输大巷无线传输的最佳工作频段为700~910 MHz。② 综采工作面无线传输的最佳工作频段为700~1 710 MHz。③ 辅助运输大巷无线传输衰减比综采工作面无线传输衰减小,且随着频率增大,辅助运输大巷与综采工作面无线传输衰减的差值变小。④ 矿井无线传输的最佳工作频段为700~1 710 MHz。Abstract: The application of technologies such as 5G, UWB, ZigBee and WiFi6 in coal mine mobile communication, personnel and vehicle positioning, and wireless transmission has promoted coal mine safety production and intelligent construction. However, due to the limitations of electrical explosion-proof measures, the wireless transmission power underground in coal mines is not greater than 6 W, which restricts the wireless transmission distance in the mine, and increases the usage of base stations and system costs. It is not convenient for system use and maintenance. Under the condition that the wireless transmission power is limited by electrical explosion-proof measures, selecting a wireless operating frequency band with smaller transmission attenuation can effectively increase the wireless transmission distance, reduce the usage of base stations, and reduce system costs. In order to meet the needs of selecting and optimizing the working frequency band of wireless transmission in mines, wireless transmission tests in the 700 MHz to 6 GHz frequency band are conducted in the auxiliary transportation roadway and fully mechanized working face of the Sandaogou Coal Mine of the National Energy Group. The test results are analyzed and the optimal frequency band for wireless transmission in mines is proposed. ① The optimal operating frequency band for wireless transmission in auxiliary transportation roadways is 700 to 910 MHz. ② The optimal working frequency band for wireless transmission in fully mechanized working faces is 700 to 1 710 MHz. ③ The wireless transmission attenuation of the auxiliary transportation roadway is smaller than that of the fully mechanized working face. As the frequency increases, the difference in wireless transmission attenuation between the auxiliary transportation roadway and the fully mechanized working face decreases. ④ The optimal working frequency band for wireless transmission in mines is 700 to 1 710 MHz.
-
表 1 辅助运输大巷不同频率无线传输衰减
Table 1. Wireless transmission attenuation at different frequencies in auxiliary transportation roadway
收发天线
距离/m辅助运输大巷不同频率无线传输衰减/dB 700 MHz 910 MHz 1 200 MHz 1 500 MHz 1 770 MHz 1 950 MHz 2 400 MHz 2 595 MHz 3 550 MHz 4 800 MHz 5 400 MHz 6 000 MHz 10 33.92 45.69 47.40 42.48 46.87 46.34 47.73 49.87 50.80 54.87 53.82 47.93 20 42.18 48.39 48.56 50.59 51.82 53.64 57.99 56.98 60.45 62.25 64.49 63.68 30 46.47 50.10 55.75 53.88 57.22 56.65 58.63 60.27 64.84 66.22 69.81 70.51 40 45.56 47.09 55.94 58.66 62.92 59.79 62.20 63.90 66.38 67.95 69.55 73.23 50 53.01 51.07 49.92 57.53 63.06 62.35 62.99 65.76 68.06 71.26 71.73 72.49 60 47.33 59.77 56.42 51.60 61.10 65.01 73.17 68.45 71.76 70.71 77.15 74.04 70 47.11 53.95 62.91 60.84 61.21 61.54 77.70 65.35 69.32 71.63 74.20 79.21 80 52.84 49.69 63.74 68.58 61.02 58.12 78.14 65.78 73.56 73.42 74.54 79.41 90 45.89 57.37 59.52 68.32 68.08 68.24 78.61 70.24 73.54 72.97 77.84 78.86 100 54.43 50.76 53.70 62.22 73.55 67.39 76.15 68.96 74.61 73.59 77.76 77.21 110 49.00 50.93 57.57 57.75 69.56 72.10 67.97 69.08 71.53 73.69 71.41 78.54 120 47.45 54.76 56.71 57.18 62.18 71.86 67.80 72.85 67.71 75.95 74.72 81.78 130 51.89 55.60 55.94 58.10 65.03 73.55 67.45 76.58 67.05 81.00 79.80 74.43 140 48.92 54.63 52.88 65.05 67.28 65.85 67.09 72.13 69.62 80.48 82.29 76.70 150 53.04 59.16 58.62 61.35 59.83 66.30 64.64 73.29 73.42 80.97 77.34 77.03 160 51.79 59.32 60.80 57.98 64.46 65.69 64.06 78.61 76.57 81.65 77.66 79.28 170 51.52 53.76 60.37 56.92 65.81 62.76 74.90 75.41 78.59 76.47 81.29 86.61 180 57.12 53.88 56.93 59.06 65.48 66.30 75.72 71.71 82.73 77.61 76.08 88.48 190 54.84 58.18 59.32 61.15 65.99 68.72 76.16 71.54 82.45 77.51 74.96 85.60 200 53.30 61.82 60.91 61.90 61.00 66.22 75.27 70.14 81.97 79.41 77.32 84.41 210 58.65 59.22 61.23 64.50 61.25 65.26 75.56 70.61 80.15 82.66 77.12 79.78 220 58.48 59.73 60.88 63.48 60.13 61.79 72.90 69.02 80.89 85.51 74.57 79.05 230 54.39 60.78 61.46 61.85 61.23 61.97 70.04 72.30 77.10 86.29 76.45 84.00 240 55.82 61.51 56.38 63.94 63.64 63.81 65.51 70.89 72.09 88.07 77.90 77.40 250 58.67 57.58 55.88 64.35 64.61 64.43 69.16 70.37 74.81 85.10 84.97 78.59 260 55.86 56.47 56.84 68.10 66.38 63.64 71.28 72.50 74.10 81.71 84.17 89.82 270 58.37 62.56 59.69 65.60 71.50 67.87 69.74 71.39 72.94 87.09 85.70 87.15 280 61.44 60.24 59.49 63.01 67.87 70.96 69.89 66.60 76.41 85.74 83.25 90.50 290 62.05 57.77 56.70 61.38 66.54 69.39 80.31 67.11 72.04 89.04 83.88 86.13 300 71.56 59.61 58.63 62.78 67.00 74.62 73.92 71.31 71.39 85.87 86.51 87.20 310 67.88 58.02 61.38 63.03 66.98 80.55 66.79 77.33 71.93 81.67 83.80 89.43 320 59.32 57.50 61.83 70.27 66.62 76.14 69.15 70.88 71.40 84.72 87.85 87.24 330 60.70 61.43 58.08 67.73 69.81 77.25 67.52 70.89 69.01 83.33 85.08 90.30 340 60.18 59.33 59.52 60.15 70.74 69.64 68.13 69.33 72.73 86.08 81.91 88.64 350 60.29 60.33 61.27 62.17 65.27 68.81 67.22 71.78 79.76 82.14 82.74 87.22 360 61.57 62.42 62.71 64.58 63.83 72.65 71.14 73.27 85.33 78.79 81.20 94.62 370 64.69 59.72 60.45 69.28 69.05 66.66 76.50 72.25 82.87 79.28 86.50 87.47 380 64.05 58.87 62.19 66.81 66.63 68.20 76.37 75.61 84.79 80.33 83.96 88.69 390 63.30 60.92 64.77 62.14 68.80 69.53 71.85 78.36 75.72 83.39 81.44 85.02 400 62.70 60.90 66.55 66.69 65.68 65.33 76.82 75.17 75.43 79.11 79.66 84.36 410 64.69 64.10 75.62 66.08 70.11 67.44 76.03 75.08 78.36 79.34 85.78 85.13 420 65.54 66.13 66.03 69.52 69.36 77.15 77.47 75.81 78.11 82.44 81.09 84.27 430 66.11 62.67 63.89 64.20 69.23 70.00 75.82 74.83 80.52 78.83 81.00 86.10 440 66.53 64.60 70.95 64.63 72.28 68.68 71.55 75.71 78.62 78.53 81.29 86.11 450 65.17 63.04 73.38 64.82 69.72 68.63 75.01 78.22 81.39 82.26 82.81 85.33 460 65.78 62.01 65.10 68.51 70.85 69.13 81.74 73.97 82.62 82.94 86.11 91.38 470 65.20 65.18 65.37 69.22 73.49 68.46 73.41 73.67 78.50 78.05 82.74 90.41 480 66.23 64.86 75.79 64.24 75.06 71.60 74.04 71.77 76.93 76.23 83.29 88.60 490 65.07 64.80 72.31 66.56 81.27 74.08 73.26 69.71 79.07 78.33 83.65 88.42 500 68.20 66.70 67.83 66.27 75.24 74.98 70.69 73.23 78.29 78.54 83.74 86.63 510 68.19 65.48 72.56 72.82 71.53 74.20 72.73 75.13 81.16 78.98 84.91 89.51 520 68.18 66.04 69.22 71.77 70.18 73.75 74.04 74.30 83.62 78.32 82.17 89.90 530 70.08 68.28 75.64 69.24 70.26 78.76 73.93 76.87 87.53 79.17 81.63 86.33 540 68.49 69.89 71.91 69.40 71.94 89.70 74.62 77.93 85.83 80.34 81.27 87.46 表 2 辅助运输大巷540 m内不同频率无线传输平均衰减
Table 2. Average wireless transmission attenuation at different frequencies within 540 m of auxiliary transportation roadway
频率/MHz 700 910 1 200 1 500 1 770 1 950 平均衰减/dB 58.17 58.97 61.58 63.15 66.44 68.21 频率/MHz 2 400 2 595 3 550 4 800 5 400 6 000 平均衰减/dB 71.27 71.30 75.49 78.85 79.52 82.92 表 3 综采工作面不同频率无线传输衰减
Table 3. Wireless transmission attenuation at different frequencies in fully mechanized working face
收发天线
距离/m综采工作面不同频率无线传输衰减/dB 700 MHz 910 MHz 1 200 MHz 1 500 MHz 1 770 MHz 1 950 MHz 2 400 MHz 2 595 MHz 3 550 MHz 4 800 MHz 5 400 MHz 6 000 MHz 10 37.28 44.89 47.28 42.56 47.24 49.04 49.57 50.79 48.66 55.57 53.48 56.22 20 47.35 48.46 53.31 45.56 56.58 58.11 59.52 60.69 60.37 66.21 67.12 68.37 30 54.61 54.37 58.08 53.87 63.16 63.19 63.56 66.75 65.67 71.55 72.20 73.17 40 57.07 55.67 57.14 58.39 63.53 65.69 67.82 69.61 66.44 76.26 73.96 74.75 50 60.22 67.70 59.56 60.97 63.11 64.06 69.02 72.69 73.09 74.18 75.16 74.47 60 57.78 63.81 66.07 62.42 66.26 65.89 68.94 71.24 71.01 77.53 80.29 76.80 70 58.97 65.07 71.25 62.32 69.03 67.88 68.20 71.83 75.05 77.93 79.75 81.78 80 60.35 67.24 65.34 66.66 73.84 71.89 71.77 75.06 77.77 81.92 80.69 78.71 90 64.09 71.46 65.83 68.53 79.65 78.36 71.21 73.14 79.38 82.60 84.26 79.68 100 67.44 72.24 69.06 69.98 83.71 77.14 72.37 78.76 72.38 81.50 80.18 82.70 110 67.18 72.67 71.11 71.02 83.38 79.04 77.11 79.84 75.69 82.50 87.49 80.34 120 70.06 74.52 71.10 71.87 77.86 77.96 83.29 79.30 78.33 85.64 85.15 82.81 130 75.51 79.26 72.31 72.51 77.67 77.70 80.38 78.57 78.24 85.62 85.93 87.73 140 77.73 78.44 75.59 71.04 77.15 78.16 79.19 83.35 77.13 86.46 82.25 88.08 150 80.37 83.97 77.06 71.28 79.41 79.43 84.80 88.13 76.39 89.30 82.54 89.50 160 84.50 82.08 78.29 71.66 80.11 78.94 85.73 86.72 85.49 85.19 83.71 81.58 170 84.14 83.57 79.23 75.92 81.47 82.32 86.84 94.32 85.07 85.04 88.22 82.46 180 85.18 89.90 79.38 76.56 81.53 83.01 84.37 91.90 90.32 87.12 87.93 85.31 190 86.48 92.02 81.28 77.00 81.46 82.02 87.68 89.28 87.54 86.85 88.25 87.99 200 86.59 89.24 83.58 78.88 80.15 80.96 89.91 87.40 87.87 85.63 90.78 89.87 210 89.08 88.19 81.24 81.49 79.18 80.31 85.37 92.91 90.56 92.22 87.20 91.96 表 4 综采工作面210 m内不同频率无线传输平均衰减
Table 4. Average wireless transmission attenuation at different frequencies within 210 m of fully mechanized working face
频率/MHz 700 910 1 200 1 500 1 770 1 950 平均衰减/dB 69.86 72.28 69.98 67.28 73.67 73.19 频率/MHz 2 400 2 595 3 550 4 800 5 400 6 000 平均衰减/dB 76.08 77.79 76.84 80.56 80.65 81.02 表 5 辅助运输大巷和综采工作面210 m内不同频率无线传输平均衰减和衰减差值
Table 5. Average attenuation and attenuation difference of wireless transmission at different frequencies within 210 m of auxiliary transportation roadway and fully mechanized working faces
位置 不同频率无线传输平均衰减/dB 700 MHz 910 MHz 1 200 MHz 1 500 MHz 1 770 MHz 1 950 MHz 2 400 MHz 2 595 MHz 3 550 MHz 4 800 MHz 5 400 MHz 6 000 MHz 辅助运输大巷210 m内 49.82 54.05 56.91 58.84 62.61 63.99 69.04 68.45 71.67 73.92 74.33 76.63 综采工作面210 m内 69.86 72.28 69.98 67.28 73.67 73.19 76.08 77.79 76.84 80.56 80.65 81.02 衰减差值/dB 19.32 18.55 12.76 8.33 10.99 9.40 6.51 9.75 4.63 6.88 6.46 4.05 -
[1] 孙继平. 煤矿智能化与矿用5G和网络硬切片技术[J]. 工矿自动化,2021,47(8):1-6. doi: 10.13272/j.issn.1671-251x.17821SUN Jiping. Coal mine intelligence,mine 5G and network hard slicing technology[J]. Industry and Mine Automation,2021,47(8):1-6. doi: 10.13272/j.issn.1671-251x.17821 [2] 孙继平,程加敏. 煤矿智能化信息综合承载网[J]. 工矿自动化,2022,48(3):1-4,90.SUN Jiping,CHENG Jiamin. Coal mine intelligent information comprehensive carrier network[J]. Journal of Mine Automation,2022,48(3):1-4,90. [3] 孙继平. 智能矿山信息综合承载网与网络切片路由器[J]. 智能矿山,2023,4(1):14-17.SUN Jiping. Intelligent mine information comprehensive bearer network and network slicing router[J]. Journal of Intelligent Mine,2023,4(1):14-17. [4] 孙继平,江嬴. 矿井车辆无人驾驶关键技术研究[J]. 工矿自动化,2022,48(5):1-5,31. doi: 10.13272/j.issn.1671-251x.17947SUN Jiping,JIANG Ying. Research on key technologies of mine unmanned vehicle[J]. Journal of Mine Automation,2022,48(5):1-5,31. doi: 10.13272/j.issn.1671-251x.17947 [5] 孙继平,徐卿. 矿井无线中继应急通信系统实现方法[J]. 工矿自动化,2021,47(5):1-8.SUN Jiping,XU Qing. Implementation method of mine wireless relay emergency communication system[J]. Industry and Mine Automation,2021,47(5):1-8. [6] 孙继平,彭铭,潘涛,等. 无线电波防爆安全阈值研究[J]. 工矿自动化,2023,49(2):1-5. doi: 10.13272/j.issn.1671-251x.18072SUN Jiping,PENG Ming,PAN Tao,et al. Research on the safety threshold of radio wave explosion-proof[J]. Journal of Mine Automation,2023,49(2):1-5. doi: 10.13272/j.issn.1671-251x.18072 [7] 潘涛,彭铭,徐会军,等. 煤矿井下无线电波防爆安全阈值及测试方法[J]. 智能矿山,2023,4(1):78-82.PAN Tao,PENG Ming,XU Huijun,et al. Safety thresholds and test methods for radio wave explosion protection in underground coal mines[J]. Journal of Intelligent Mine,2023,4(1):78-82. [8] 邵水才,郭旭东,彭铭,等. 煤矿井下无线传输分析方法[J]. 工矿自动化,2022,48(10):123-128. doi: 10.13272/j.issn.1671-251x.18038SHAO Shuicai,GUO Xudong,PENG Ming,et al. Coal mine underground wireless transmission analysis method[J]. Journal of Mine Automation,2022,48(10):123-128. doi: 10.13272/j.issn.1671-251x.18038 [9] 梁伟锋,孙继平,彭铭,等. 煤矿井下无线电波防爆安全功率阈值研究[J]. 工矿自动化,2022,48(12):123-128,163. doi: 10.13272/j.issn.1671-251x.18045LIANG Weifeng,SUN Jiping,PENG Ming,et al. Research on safe power threshold of radio wave explosion-proof in coal mine[J]. Journal of Mine Automation,2022,48(12):123-128,163. doi: 10.13272/j.issn.1671-251x.18045 [10] 丁序海,潘涛,彭铭,等. 煤矿井下无线电波对人体的影响[J]. 工矿自动化,2022,48(11):84-92,144. doi: 10.13272/j.issn.1671-251x.18044DING Xuhai,PAN Tao,PENG Ming,et al. Influence of underground radio wave on human body in coal mine[J]. Journal of Mine Automation,2022,48(11):84-92,144. doi: 10.13272/j.issn.1671-251x.18044 [11] 孙继平. 煤矿机器人电气安全技术研究[J]. 煤炭科学技术,2019,47(4):1-6. doi: 10.13199/j.cnki.cst.2019.04.001SUN Jiping. Research on electrical safety technology of coal mine robot[J]. Coal Science and Technology,2019,47(4):1-6. doi: 10.13199/j.cnki.cst.2019.04.001 [12] 孙继平,张高敏. 矿井应急通信系统[J]. 工矿自动化,2019,45(8):1-5. doi: 10.13272/j.issn.1671-251x.17483SUN Jiping,ZHANG Gaomin. Mine emergency communication system[J]. Industry and Mine Automation,2019,45(8):1-5. doi: 10.13272/j.issn.1671-251x.17483 [13] 孙继平. 煤矿智能化与矿用5G[J]. 工矿自动化,2020,46(8):1-7.SUN Jiping. Coal mine intelligence and mine-used 5G[J]. Industry and Mine Automation,2020,46(8):1-7. [14] 孙继平,陈晖升. 智慧矿山与5G和WiFi6[J]. 工矿自动化,2019,45(10):1-4. doi: 10.13272/j.issn.1671-251x.17517SUN Jiping,CHEN Huisheng. Smart mine with 5G and WiFi6[J]. Industry and Mine Automation,2019,45(10):1-4. doi: 10.13272/j.issn.1671-251x.17517 [15] 孙继平. 矿井宽带无线传输技术研究[J]. 工矿自动化,2013,39(2):1-5. doi: 10.7526/J.ISSN.1671-251X.2013.02.001SUN Jiping. Research of mine wireless broadband transmission technology[J]. Industry and Mine Automation,2013,39(2):1-5. doi: 10.7526/J.ISSN.1671-251X.2013.02.001 [16] 孙继平. 煤矿信息化自动化新技术与发展[J]. 煤炭科学技术,2016,44(1):19-23,83. doi: 10.13199/j.cnki.cst.2016.01.004SUN Jiping. New technology and development of mine informatization and automation[J]. Coal Science and Technology,2016,44(1):19-23,83. doi: 10.13199/j.cnki.cst.2016.01.004 [17] 孙继平. 煤矿信息化与自动化发展趋势[J]. 工矿自动化,2015,41(4):1-5. doi: 10.13272/j.issn.1671-251x.2015.04.001SUN Jiping. Development trend of coal mine informatization and automation[J]. Industry and Mine Automation,2015,41(4):1-5. doi: 10.13272/j.issn.1671-251x.2015.04.001 [18] 孙继平,张高敏. 基于混合射线追踪的矿井电磁波分析方法[J]. 煤炭学报,2022,47(7):2834-2843. doi: 10.13225/j.cnki.jccs.2021.1920SUN Jiping,ZHANG Gaomin. Mine electromagnetic wave analysis method based on mixed raytracing[J]. Journal of China Coal Society,2022,47(7):2834-2843. doi: 10.13225/j.cnki.jccs.2021.1920 [19] 张高敏,刘毅,彭铭. UWR-FDTD矿井电磁波数值分析方法[J]. 煤炭学报,2022,47(11):4157-4166. doi: 10.13225/j.cnki.jccs.2022.0823ZHANG Gaomin,LIU Yi,PENG Ming. Numerical analysis method of the electromagnetic fields in coal mine roadway using UWR-FDTD[J]. Journal of China Coal Society,2022,47(11):4157-4166. doi: 10.13225/j.cnki.jccs.2022.0823 [20] 张高敏,刘毅,彭铭. FDTD矿井无线传输特性分析方法研究[J]. 煤炭科学技术,2022,50(11):202-212. doi: 10.13199/j.cnki.cst.2022-1273ZHANG Gaomin,LIU Yi,PENG Ming. Resarch on the FDTD analysis method of wireless transmission characteristics in underground mine[J]. Coal Science and Technology,2022,50(11):202-212. doi: 10.13199/j.cnki.cst.2022-1273 [21] 孙继平, 张高敏. 矿用5G频段选择及天线优化设置研究[J]. 工矿自动化, 2020, 46(5): 1-7.SUN Jiping, ZHANG Gaomin. Research on 5G frequency band selection and antenna optimization setting in coal mine[J]. Industry and Mine Automation. 2020, 46(5): 1-7.