留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

煤矿井下UWB信号路径损耗测量及中心频率选择

吕瑞杰

吕瑞杰. 煤矿井下UWB信号路径损耗测量及中心频率选择[J]. 工矿自动化,2023,49(4):147-152.  doi: 10.13272/j.issn.1671-251x.18085
引用本文: 吕瑞杰. 煤矿井下UWB信号路径损耗测量及中心频率选择[J]. 工矿自动化,2023,49(4):147-152.  doi: 10.13272/j.issn.1671-251x.18085
LYU Ruijie. Measurement of UWB signal path loss and center frequency selection in underground coal mines[J]. Journal of Mine Automation,2023,49(4):147-152.  doi: 10.13272/j.issn.1671-251x.18085
Citation: LYU Ruijie. Measurement of UWB signal path loss and center frequency selection in underground coal mines[J]. Journal of Mine Automation,2023,49(4):147-152.  doi: 10.13272/j.issn.1671-251x.18085

煤矿井下UWB信号路径损耗测量及中心频率选择

doi: 10.13272/j.issn.1671-251x.18085
基金项目: 国家重点研发计划项目(2017YFC0804303);国家能源集团科技创新项目(GJNY2030XDXM-19-06.1)。
详细信息
    作者简介:

    吕瑞杰(1985—),男,内蒙古鄂尔多斯人,工程师,现从事矿井精确定位方面的工作,E-mail:1019301915@qq.com

  • 中图分类号: TD655

Measurement of UWB signal path loss and center frequency selection in underground coal mines

  • 摘要: 煤矿井下分别部署UWB,5G,WiFi6等系统,存在基站多、传输线缆多、供电设备多、系统成本高、维护工作量大等问题。将UWB,5G,WiFi6等集成在同一个一体化基站或分站内,可有效解决上述问题,但一体化基站的UWB,5G,WiFi6天线之间距离近,相互干扰大。选择不同的工作频段,是解决一体化基站的UWB,5G,WiFi6天线之间相互干扰大的有效方法。为与地面设备兼容,矿用WiFi6和5G工作频段选择范围较小,UWB工作频段选择范围较大。目前矿井人员和车辆定位系统主要采用UWB主流芯片DW1000,其中心频率为3.5,4.0,4.5,6.5 GHz。中心频率为3.5 GHz的UWB与3.5 GHz的5G工作频段相近,不宜选用。中心频率为4.0,4.5,6.5 GHz的3个频段的UWB,均与5G和WiFi6频段不相近,可选择其中衰减较小的频段作为矿用UWB中心频率。煤矿井下测试结果表明,4.0 GHz信号的路径损耗最小,在其他条件相同的情况下,传输距离最远,既解决了UWB与5G和WiFi6相互干扰的问题,又减少了基站数量和系统成本,便于使用与维护。因此,UWB中心频率应优选4.0 GHz。

     

  • 图  1  副一大巷

    Figure  1.  First sub-main roadway

    图  2  副二大巷

    Figure  2.  Second sub-main roadway

    图  3  辅运大巷

    Figure  3.  Auxiliary transportation roadway

    图  4  测试设备布置

    Figure  4.  Test equipment layout

    图  5  巷道横截面测试点位

    Figure  5.  Test points in roadway cross section

    图  6  4.0 GHz信号在不同巷道各空间点位路径损耗

    Figure  6.  Path loss at each spatial points of 4.0 GHz signal in different roadways

    图  7  4.5 GHz信号在不同巷道各空间点位路径损耗

    Figure  7.  Path loss at each spatial points of 4.5 GHz signal in different roadways

    图  8  5.5 GHz信号在不同巷道各空间点位路径损耗

    Figure  8.  Path loss at each spatial points of 5.5 GHz signal in different roadways

    图  9  6.0 GHz信号在不同巷道各空间点位路径损耗

    Figure  9.  Path loss at each spatial points of 6.0 GHz signal in different roadways

    图  10  不同巷道平均路径损耗

    Figure  10.  Average path loss in different roadways

    表  1  巷道横截面空间点位距离参数

    Table  1.   Spatial point distance parameter of roadway cross section m

    巷道L1L2H1H2H3
    副一大巷2.22.2123
    副二大巷2.42.4123
    辅运大巷2.82.8123
    下载: 导出CSV

    表  2  10 m电缆损耗实测结果

    Table  2.   Measured loss results of 10 m cable

    中心频率/GHz4.04.55.56.0
    损耗/dB9.09.610.811.4
    下载: 导出CSV
  • [1] 孙继平,陈晖升. 智慧矿山与5G和WiFi6[J]. 工矿自动化,2019,45(10):1-4.

    SUN Jiping,CHEN Huisheng. Smart mine with 5G and WiFi6[J]. Industry and Mine Automation,2019,45(10):1-4.
    [2] 胡青松,张申,吴立新,等. 矿井动目标定位:挑战、现状与趋势[J]. 煤炭学报,2016,41(5):1059-1068.

    HU Qingsong,ZHANG Shen,WU Lixin,et al. Localization techniques of mobile objects in coal mines:challenges,solutions and trends[J]. Journal of China Coal Society,2016,41(5):1059-1068.
    [3] 孙继平,江嬴. 矿井车辆无人驾驶关键技术研究[J]. 工矿自动化,2022,48(5):1-5,31.

    SUN Jiping,JIANG Ying. Research on key technologies of mine unmanned vehicle[J]. Journal of Mine Automation,2022,48(5):1-5,31.
    [4] 符世琛,李一鸣,张敏骏,等. 基于UWB信号的TW−TOF测距技术在狭长巷道中的精度测试实验研究[J]. 煤炭技术,2017,36(3):246-248.

    FU Shichen,LI Yiming,ZHANG Minjun,et al. Accuracy testing experiment in narrow roadway based on TW-TOF ranging technique of UWB signals[J]. Coal Technology,2017,36(3):246-248.
    [5] 郝维来,杨公训. 基于UWB无线通信技术在矿井中的应用研究[J]. 计算机应用研究,2008,25(2):600-602.

    HAO Weilai,YANG Gongxun. Application of wireless communication technology based on UWB in coal mine underground[J]. Application Research of Computers,2008,25(2):600-602.
    [6] 刘清. 基于超宽带技术的采煤机定位系统设计[J]. 煤炭科学技术,2016,44(11):132-135.

    LIU Qing. Design on positioning system of shearer based on ultra wide band technology[J]. Coal Science and Technology,2016,44(11):132-135.
    [7] 孙继平. 煤矿智能化与矿用5G[J]. 工矿自动化,2020,46(8):1-7.

    SUN Jiping. Coal mine intelligence and mine-used 5G[J]. Industry and Mine Automation,2020,46(8):1-7.
    [8] 孙继平,张高敏. 矿用5G频段选择及天线优化设置研究[J]. 工矿自动化,2020,46(5):1-7.

    SUN Jiping,ZHANG Gaomi. Research on 5G frequency band selection and antenna optimization setting in coal mine[J]. Industry and Mine Automation,2020,46(5):1-7.
    [9] 顾义东,孟玮. 煤矿5G无线通信系统建设构想[J]. 工矿自动化,2021,47(10):1-6,13.

    GU Yidong,MENG Wei. Coal mine 5G wireless communication system construction concept[J]. Industry and Mine Automation,2021,47(10):1-6,13.
    [10] 孙继平. 煤矿智能化与矿用5G和网络硬切片技术[J]. 工矿自动化,2021,47(8):1-6.

    SUN Jiping. Coal mine intelligence,mine 5G and network hard slicing technology[J]. Industry and Mine Automation,2021,47(8):1-6.
    [11] 霍振龙. 矿井无线通信系统现状与发展趋势[J]. 工矿自动化,2022,48(6):1-5.

    HUO Zhenlong. Current situation and development trend of mine wireless communication system[J]. Journal of Mine Automation,2022,48(6):1-5.
    [12] 高思伟,李森. WiFi快速漫游与Mesh网络技术在综采工作面的应用研究[J]. 工矿自动化,2019,45(2):35-40.

    GAO Siwei,LI Sen. Research on application of fast roaming and Mesh network technology of WiFi communication on fully mechanized coal mining face[J]. Industry and Mine Automation,2019,45(2):35-40.
    [13] 孙继平,程加敏. 煤矿智能化信息综合承载网[J]. 工矿自动化,2022,48(3):1-4,90.

    SUN Jiping,CHENG Jiamin. Coal mine intelligent information comprehensive carrier network[J]. Journal of Mine Automation,2022,48(3):1-4,90.
    [14] 孙继平. 矿井宽带无线传输技术研究[J]. 工矿自动化,2013,39(2):1-5.

    SUN Jiping. Research of mine wireless broadband transmission technology[J]. Industry and Mine Automation,2013,39(2):1-5.
    [15] 孙继平. 矿井移动通信的现状及关键科学技术问题[J]. 工矿自动化,2009,35(7):110-114.

    SUN Jiping. Present situation and key problems of science and technology of mine mobile communication[J]. Industry and Mine Automation,2009,35(7):110-114.
    [16] 关丙火,张晋. 煤矿井下“一网一站”组网模式关键技术研究[J]. 煤炭科学技术,2019,47(10):155-160.

    GUAN Binghuo,ZHANG Jin. Study on key technology for networking mode of "one net and one station" in coal mine[J]. Coal Science and Technology,2019,47(10):155-160.
    [17] 原志明. 智能矿井“一网一站”通信技术集成与应用研究[J]. 能源与环保,2017,39(9):104-109.

    YUAN Zhiming. Combination of "one net one station" communication technology of intelligent mine shaft and its application[J]. China Energy and Environmental Protection,2017,39(9):104-109.
    [18] 丁序海,潘涛,彭铭,等. 煤矿井下无线电波对人体的影响[J]. 工矿自动化,2022,48(11):84-92,144.

    DING Xuhai,PAN Tao,PENG Ming,et al. Influence of underground radio wave on human body in coal mine[J]. Journal of Mine Automation,2022,48(11):84-92,144.
    [19] 王艳芬,陈颖,孙彦景. 矿井UWB路径损耗模型的构建及仿真[J]. 太原理工大学学报,2012,43(5):549-552.

    WANG Yanfen,CHEN Ying,SUN Yanjing. Construction and simulation of the path loss model for mine UWB[J]. Journal of Taiyuan University of Technology,2012,43(5):549-552.
    [20] NKAKANOU B,DELISLE G Y,HAKEM N. Experimental characterization of ultra-wideband channel parameter measurements in an underground mine[J]. Journal of Computer Networks and Communications,2011(1):1-7.
    [21] COULIBALY Y, GILLES D, NADIR H, et al. Experimental characterization of the UWB channel for an underground mining vehicle[C]. 7th European Conference on Antennas and Propagation, Gothenburg, 2013: 2331-2334.
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  164
  • HTML全文浏览量:  65
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-10
  • 修回日期:  2023-04-11
  • 网络出版日期:  2023-04-27

目录

    /

    返回文章
    返回