留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

煤炭工业互联网技术研究综述

杨军 张超 杨恢凡 郭一楠

杨军,张超,杨恢凡,等. 煤炭工业互联网技术研究综述[J]. 工矿自动化,2023,49(4):23-32.  doi: 10.13272/j.issn.1671-251x.18081
引用本文: 杨军,张超,杨恢凡,等. 煤炭工业互联网技术研究综述[J]. 工矿自动化,2023,49(4):23-32.  doi: 10.13272/j.issn.1671-251x.18081
YANG Jun, ZHANG Chao, YANG Huifan, et al. Research summary on coal industry internet technology[J]. Journal of Mine Automation,2023,49(4):23-32.  doi: 10.13272/j.issn.1671-251x.18081
Citation: YANG Jun, ZHANG Chao, YANG Huifan, et al. Research summary on coal industry internet technology[J]. Journal of Mine Automation,2023,49(4):23-32.  doi: 10.13272/j.issn.1671-251x.18081

煤炭工业互联网技术研究综述

doi: 10.13272/j.issn.1671-251x.18081
基金项目: 国家自然科学基金创新研究群体项目(52121003)。
详细信息
    作者简介:

    杨军(1978—),男,河南南阳人,教授级高级工程师,主要研究方向为大数据理论与技术、煤炭工业互联网,E-mail:yj@cumtb.edu.cn

  • 中图分类号: TD67

Research summary on coal industry internet technology

  • 摘要: 煤炭工业互联网是加速煤炭领域高质量发展的重要引擎,可有效驱动能源领域设备智能化、产业数字化。给出了煤炭工业互联网体系架构,从感知层、传输层、赋能平台、工业APP、信息安全5个方面分析了煤炭工业互联网技术研究现状和发展方向。感知层在实现超低功耗、精准感知、高可靠性、能量自动捕获等方面取得进步,但仍存在感知手段单一、易受环境因素影响等问题,目前还无法充分满足矿井泛在感知需求,可从新型传感器研发、低功耗和能量收集技术、抗电磁干扰技术、智能感知技术等方面进一步提高感知层智能化水平。传输层现有的以太网、4G、WiFi等技术无法满足智慧矿山高可靠、高带宽、低延迟的传输要求,5G技术可满足全矿井泛在感知需求,但在井下应用中仍存在最大射频功率受限、无法可靠应对井下应急场景等问题,因此目前井下还不能完全使用5G替代传统通信网络。赋能平台是煤炭工业互联网推动智能化的中枢和核心,指出大数据是赋能平台的关键要素,煤炭工业机理模型和诊断决策模型是赋能平台的灵魂,数字孪生技术可为煤炭行业生产、决策、管理等环节赋能。工业APP可为煤炭产业链各环节提供服务,帮助煤炭行业攻克高风险、工艺继承创新难、产业链协同难等难题,但是煤炭领域工业APP的发展应用仍不成熟。信息安全是煤矿智能化建设的保障,需要从物理信息安全、网络信息安全、系统信息安全、数据信息安全和应用信息安全等方面采取措施,提升安全防护水平。

     

  • 图  1  煤炭工业互联网体系架构

    Figure  1.  Coal industry internet architecture

    图  2  煤矿大数据处理过程

    Figure  2.  Process of coal mine big data processing

    图  3  煤炭领域工业APP应用

    Figure  3.  Industrial APP application in coal field

    表  1  无线网络技术对比

    Table  1.   Comparison of mine wireless network technologies

    传输技术技术指标优点缺点
    ZigBee采用IEEE 802.15.4标准,传输距离从75 m至数百米近距离,低复杂度,低功耗,低成本性能较差,传输速率较低
    4G支持100 Mibit/s下载速率、50 Mibit/s上传速率便捷高效,传输速率高,传输距离长成本较高,功耗较高
    WiFi采用IEEE 802.11标准,传输速率为54 Mibit/s或更高,空旷地带无线传输距离为300 m传输速率高,成本较低,较为可靠覆盖范围受限,跨AP切换时延较大
    LoRa空旷地带传输距离达15 km,最高传输速率为600 KiB/s广覆盖,低功耗,长距离传输速率低
    UWB采用时间间隔极小(纳秒级)的脉冲进行通信密度低,功率低,穿透力强,抗干扰效果好,传输速率高,定位精度高传输距离短,缺少大规模商业应用
    5G要求最低速率为1 Gibit/s,时延为1 ms高带宽,低时延,广连接成本较高,井下应用存在限制
    下载: 导出CSV
  • [1] 王国法,王虹,任怀伟,等. 智慧煤矿2025情景目标和发展路径[J]. 煤炭学报,2018,43(2):295-305.

    WANG Guofa,WANG Hong,REN Huaiwei,et al. 2025 scenarios and development path of intelligent coal mine[J]. Journal of China Coal Society,2018,43(2):295-305.
    [2] 王国法,任怀伟,赵国瑞,等. 煤矿智能化十大“痛点”解析及对策[J]. 工矿自动化,2021,47(6):1-11.

    WANG Guofa,REN Huaiwei,ZHAO Guorui,et al. Analysis and countermeasures of ten 'pain points' of intelligent coal mine[J]. Industry and Mine Automation,2021,47(6):1-11.
    [3] 康红普,王国法,王双明,等. 煤炭行业高质量发展研究[J]. 中国工程科学,2021,23(5):130-138.

    KANG Hongpu,WANG Guofa,WANG Shuangming,et al. High-quality development of China's coal industry[J]. Strategic Study of CAE,2021,23(5):130-138.
    [4] 王国法,刘峰,庞义辉,等. 煤矿智能化——煤炭工业高质量发展的核心技术支撑[J]. 煤炭学报,2019,44(2):349-357.

    WANG Guofa,LIU Feng,PANG Yihui,et al. Coal mine intellectualization:the core technology of high quality development[J]. Journal of China Coal Society,2019,44(2):349-357.
    [5] 王国法,赵国瑞,任怀伟. 智慧煤矿与智能化开采关键核心技术分析[J]. 煤炭学报,2019,44(1):34-41.

    WANG Guofa,ZHAO Guorui,REN Huaiwei. Analysis on key technologies of intelligent coal mine and intelligent mining[J]. Journal of China Coal Society,2019,44(1):34-41.
    [6] 王国法,范京道,徐亚军,等. 煤炭智能化开采关键技术创新进展与展望[J]. 工矿自动化,2018,44(2):5-12.

    WANG Guofa,FAN Jingdao,XU Yajun,et al. Innovation progress and prospect on key technologies of intelligent coal mining[J]. Industry and Mine Automation,2018,44(2):5-12.
    [7] 姜德义,魏立科,王翀,等. 智慧矿山边缘云协同计算技术架构与基础保障关键技术探讨[J]. 煤炭学报,2020,45(1):484-492.

    JIANG Deyi,WEI Like,WANG Chong,et al. Discussion on the technology architecture and key basic support technology for intelligent mine edge-cloud collaborative computing[J]. Journal of China Coal Society,2020,45(1):484-492.
    [8] 王国法,庞义辉,任怀伟. 智慧矿山技术体系研究与发展路径[J]. 金属矿山,2022(5):1-9.

    WANG Guofa,PANG Yihui,REN Huaiwei. Research and development path of smart mine technology system[J]. Metal Mine,2022(5):1-9.
    [9] 丁恩杰,金雷,陈迪. 互联网+感知矿山安全监控系统研究[J]. 煤炭科学技术,2017,45(1):129-134.

    DING Enjie,JIN Lei,CHEN Di. Study on safety monitoring and control system of internet+perception mine[J]. Coal Science and Technology,2017,45(1):129-134.
    [10] 李军,赵军. MEMS传感器的发展及其在煤矿井下的应用研究[J]. 煤炭技术,2014,33(7):238-240.

    LI Jun,ZHAO Jun. Development and application of MEMS sensor under coal mine[J]. Coal Technology,2014,33(7):238-240.
    [11] ZHAO Yong,LI Zhongqiang,DONG Yue. Design and experiments on a wide range fiber Bragg grating sensor for health monitoring of coal mines[J]. Optik,2014,125(20):6287-6290. doi: 10.1016/j.ijleo.2014.08.015
    [12] REDDY N S, SAKETH M S, DHAR S. Review of sensor technology for mine safety monitoring systems: a holistic approach[C]. IEEE First International Conference on Control, Measurement and Instrumentation, Kolkata, 2016: 429-434.
    [13] 丁恩杰,施卫祖,张申,等. 矿山物联网顶层设计[J]. 工矿自动化,2017,43(9):1-11.

    DING Enjie,SHI Weizu,ZHANG Shen,et al. Top-down design of mine Internet of things[J]. Industry and Mine Automation,2017,43(9):1-11.
    [14] 李首滨,李森,张守祥,等. 综采工作面智能感知与智能控制关键技术与应用[J]. 煤炭科学技术,2021,49(4):28-39.

    LI Shoubin,LI Sen,ZHANG Shouxiang,et al. Key technology and application of intelligent perception and intelligent control in fully mechanized mining face[J]. Coal Science and Technology,2021,49(4):28-39.
    [15] 王继业,蒲天骄,仝杰,等. 能源互联网智能感知技术框架与应用布局[J]. 电力信息与通信技术,2020,18(4):1-14.

    WANG Jiye,PU Tianjiao,TONG Jie,et al. Intelligent perception technology framework and application layout of energy Internet[J]. Electric Power Information and Communication Technology,2020,18(4):1-14.
    [16] 赵小虎,张凯,赵志凯,等. 矿山物联网网络技术发展趋势与关键技术[J]. 工矿自动化,2018,44(4):1-7.

    ZHAO Xiaohu,ZHANG Kai,ZHAO Zhikai,et al. Developing trend and key technologies of network technology of mine Internet of things[J]. Industry and Mine Automation,2018,44(4):1-7.
    [17] 袁亮,俞啸,丁恩杰,等. 矿山物联网人−机−环状态感知关键技术研究[J]. 通信学报,2020,41(2):1-12.

    YUAN Liang,YU Xiao,DING Enjie,et al. Research on key technologies of human-machine-environment states perception in mine Internet of things[J]. Journal on Communications,2020,41(2):1-12.
    [18] 霍振龙. LoRa技术在矿井无线通信中的应用分析[J]. 工矿自动化,2017,43(10):34-37.

    HUO Zhenlong. Application analysis of LoRa technology in mine wireless communication[J]. Industry and Mine Automation,2017,43(10):34-37.
    [19] 孙继平. 矿井宽带无线传输技术研究[J]. 工矿自动化,2013,39(2):1-5.

    SUN Jiping. Research of mine wireless broadband transmission technology[J]. Industry and Mine Automation,2013,39(2):1-5.
    [20] 王国法,赵国瑞,胡亚辉. 5G技术在煤矿智能化中的应用展望[J]. 煤炭学报,2020,45(1):16-23.

    WANG Guofa,ZHAO Guorui,HU Yahui,et al. Application prospect of 5G technology in coal mine intelligence[J]. Journal of China Coal Society,2020,45(1):16-23.
    [21] 葛世荣,王世佳,曹波,等. 智能采运机组自主定位原理与技术[J]. 煤炭学报,2022,47(1):75-86.

    GE Shirong,WANG Shijia,CAO Bo,et al. Autonomous positioning principle and technology of intelligent shearer and conveyor[J]. Journal of China Coal Society,2022,47(1):75-86.
    [22] 杨健健,张强,吴淼,等. 巷道智能化掘进的自主感知及调控技术研究进展[J]. 煤炭学报,2020,45(6):2045-2055.

    YANG Jianjian,ZHANG Qiang,WU Miao,et al. Research progress of autonomous perception and control technology for intelligent heading[J]. Journal of China Coal Society,2020,45(6):2045-2055.
    [23] 范京道,闫振国,李川. 基于5G技术的煤矿智能化开采关键技术探索[J]. 煤炭科学技术,2020,48(7):92-97.

    FAN Jingdao,YAN Zhenguo,LI Chuan. Exploration of intelligent coal mining key technology based on 5G technology[J]. Coal Science and Technology,2020,48(7):92-97.
    [24] 毛馨凯,刘万远. 5G技术在智能采煤工作面的应用研究[J]. 工矿自动化,2021,47(增刊1):39-41,50.

    MAO Xinkai,LIU Wanyuan. Research on application of 5G technology in intelligent coal mining face[J]. Industry and Mine Automation,2021,47(S1):39-41,50.
    [25] 霍振龙,张袁浩. 5G通信技术及其在煤矿的应用构想[J]. 工矿自动化,2020,46(3):1-5.

    HUO Zhenlong,ZHANG Yuanhao. 5G communication technology and its application conception in coal mine[J]. Industry and Mine Automation,2020,46(3):1-5.
    [26] 王睿,张克落. 5G网络切片综述[J]. 南京邮电大学学报(自然科学版),2018,38(5):19-27.

    WANG Rui,ZHANG Keluo. Survey of 5G network slicing[J]. Journal of Nanjing University of Posts and Telecommunications(Natural Science Edition),2018,38(5):19-27.
    [27] 刘伟芳,吴迪. 国内外露天矿山无人驾驶技术发展现状[J]. 露天采矿技术,2020,35(4):32-34,38.

    LIU Weifang,WU Di. Technology development status of unmanned driving in open-pit mines at home and abroad[J]. Opencast Mining Technology,2020,35(4):32-34,38.
    [28] 孙继平. 煤矿智能化与矿用5G[J]. 工矿自动化,2020,46(8):1-7.

    SUN Jiping. Coal mine intelligence and mine-used 5G[J]. Industry and Mine Automation,2020,46(8):1-7.
    [29] 李君,邱君降,窦克勤. 工业互联网平台参考架构、核心功能与应用价值研究[J]. 制造业自动化,2018,40(6):103-106,126.

    LI Jun,QIU Junjiang,DOU Keqin. Research on the reference architecture,core function and application value of industrial internet platform[J]. Manufacturing Automation,2018,40(6):103-106,126.
    [30] 丁恩杰,俞啸,廖玉波,等. 基于物联网的矿山机械设备状态智能感知与诊断[J]. 煤炭学报,2020,45(6):2308-2319.

    DING Enjie,YU Xiao,LIAO Yubo,et al. Key technology of mine equipment state perception and online diagnosis under Internet of things[J]. Journal of China Coal Society,2020,45(6):2308-2319.
    [31] 张建中,郭军. 智慧矿山工业互联网技术架构探讨[J]. 煤炭科学技术,2022,50(5):238-246.

    ZHANG Jianzhong,GUO Jun. Discussion on Internet technology framework of smart mine industry[J]. Coal Science and Technology,2022,50(5):238-246.
    [32] 吴群英,蒋林,王国法,等. 智慧矿山顶层架构设计及其关键技术[J]. 煤炭科学技术,2020,48(7):80-91.

    WU Qunying,JIANG Lin,WANG Guofa,et al. Top-level architecture design and key technologies of smart mine[J]. Coal Science and Technology,2020,48(7):80-91.
    [33] 李首滨. 煤炭工业互联网及其关键技术[J]. 煤炭科学技术,2020,48(7):98-108.

    LI Shoubin. Coal industry Internet and its key technologies[J]. Coal Science and Technology,2020,48(7):98-108.
    [34] 毛善君,刘孝孔,雷小锋,等. 智能矿井安全生产大数据集成分析平台及其应用[J]. 煤炭科学技术,2018,46(12):169-176.

    MAO Shanjun,LIU Xiaokong,LEI Xiaofeng,et al. Research and application on big data integration analysis platform for intelligent mine safety production[J]. Coal Science and Technology,2018,46(12):169-176.
    [35] 葛世荣. 煤矿智采工作面概念及系统架构研究[J]. 工矿自动化,2020,46(4):1-9.

    GE Shirong. Research on concept and system architecture of smart mining workface in coal mine[J]. Industry and Mine Automation,2020,46(4):1-9.
    [36] 葛世荣,胡而已,裴文良. 煤矿机器人体系及关键技术[J]. 煤炭学报,2020,45(1):455-463.

    GE Shirong,HU Eryi,PEI Wenliang. Classification system and key technology of coal mine robot[J]. Journal of China Coal Society,2020,45(1):455-463.
    [37] 葛世荣,张帆,王世博,等. 数字孪生智采工作面技术架构研究[J]. 煤炭学报,2020,45(6):1925-1936.

    GE Shirong,ZHANG Fan,WANG Shibo,et al. Digital twin for smart coal mining workface:technological frame and construction[J]. Journal of China Coal Society,2020,45(6):1925-1936.
    [38] 葛世荣,郝尚清,张世洪,等. 我国智能化采煤技术现状及待突破关键技术[J]. 煤炭科学技术,2020,48(7):28-46.

    GE Shirong,HAO Shangqing,ZHANG Shihong,et al. Status of intelligent coal mining technology and potential key technologies in China[J]. Coal Science and Technology,2020,48(7):28-46.
    [39] 蓝航,陈东科,毛德兵. 我国煤矿深部开采现状及灾害防治分析[J]. 煤炭科学技术,2016,44(1):39-46.

    LAN Hang,CHEN Dongke,MAO Debing. Current status of deep mining and disaster prevention in China[J]. Coal Science and Technology,2016,44(1):39-46.
    [40] 付华,谢森,徐耀松,等. 基于ACC−ENN算法的煤矿瓦斯涌出量动态预测模型研究[J]. 煤炭学报,2014,39(7):1296-1301.

    FU Hua,XIE Sen,XU Yaosong,et al. Gas emission dynamic prediction model of coal mine based on ACC-ENN algorithm[J]. Journal of China Coal Society,2014,39(7):1296-1301.
    [41] 乔伟,靳德武,王皓,等. 基于云服务的煤矿水害监测大数据智能预警平台构建[J]. 煤炭学报,2020,45(7):2619-2627.

    QIAO Wei,JIN Dewu,WANG Hao,et al. Development of big data intelligent early warning platform for coal mine water hazard monitoring based on cloud service[J]. Journal of China Coal Society,2020,45(7):2619-2627.
    [42] 王益伟. 大水矿山地下水致灾机理及防治研究[D]. 长沙: 中南大学, 2014.

    WANG Yiwei. Research on disaster mechanism & prevention and control induced by groundwater in the groundwater abundant mines[D]. Changsha: Central South University, 2014.
    [43] 张志龙. 矿井水致灾条件与致灾机理分析及应用[J]. 煤炭科学技术,2013,41(增刊2):222-225,228.

    ZHANG Zhilong. Application and analysis on condition and mechanism caused by mine water disaster[J]. Coal Science and Technology,2013,41(S2):222-225,228.
    [44] 朱宗奎,徐智敏,孙亚军. 矿井水害的临突监测指标及预警模型[J]. 煤矿安全,2014,45(1):170-172.

    ZHU Zongkui,XU Zhimin,SUN Yajun. Critical water inrush monitoring index and early-warning model of mine water disaster[J]. Safety in Coal Mines,2014,45(1):170-172.
    [45] 邓军,李贝,王凯,等. 我国煤火灾害防治技术研究现状及展望[J]. 煤炭科学技术,2016,44(10):1-7,101.

    DENG Jun,LI Bei,WANG Kai,et al. Research status and outlook on prevention and control technology of coal fire disaster in China[J]. Coal Science and Technology,2016,44(10):1-7,101.
    [46] 李翠平,曹志国,钟媛. 矿井火灾的场量模型构建及其可视化仿真[J]. 煤炭学报,2015,40(4):902-908.

    LI Cuiping,CAO Zhiguo,ZHONG Yuan. Field variables modeling and visualization simulation of fire disaster in underground mine[J]. Journal of China Coal Society,2015,40(4):902-908.
    [47] 贾宝新,陈浩,潘一山,等. 多参量综合指标冲击地压预测技术研究[J]. 防灾减灾工程学报,2019,39(2):330-337.

    JIA Baoxin,CHEN Hao,PAN Yishan,et al. Rock burst prediction technology of multi-parameters synthetic index[J]. Journal of Disaster Prevention and Mitigation Engineering,2019,39(2):330-337.
    [48] 王浩宇. 基于数据的煤矿主通风机故障诊断方法研究[D]. 徐州: 中国矿业大学, 2017.

    WANG Haoyu. Research on fault diagnosis method of mine main ventilator based on data[D]. Xuzhou: China University of Mining and Technology, 2017.
    [49] 任怀伟,王国法,赵国瑞,等. 智慧煤矿信息逻辑模型及开采系统决策控制方法[J]. 煤炭学报,2019,44(9):2923-2935.

    REN Huaiwei,WANG Guofa,ZHAO Guorui,et al. Smart coal mine logic model and decision control method of mining system[J]. Journal of China Coal Society,2019,44(9):2923-2935.
    [50] 路正雄,郭卫,张帆,等. 基于数据驱动的综采装备协同控制系统架构及关键技术[J]. 煤炭科学技术,2020,48(7):195-205.

    LU Zhengxiong,GUO Wei,ZHANG Fan,et al. Collaborative control system architecture and key technologies of fully-mechanized mining equipment based on data drive[J]. Coal Science and Technology,2020,48(7):195-205.
    [51] 普亚松,郭德伟,张文斌. 故障诊断技术在煤矿机械设备中的应用[J]. 工矿自动化,2015,41(4):36-39.

    PU Yasong,GUO Dewei,ZHANG Wenbin. Application of fault diagnosis technologies in coal mine machinery[J]. Industry and Mine Automation,2015,41(4):36-39.
    [52] 崔亚仲,白明亮,李波. 智能矿山大数据关键技术与发展研究[J]. 煤炭科学技术,2019,47(3):66-74.

    CUI Yazhong,BAI Mingliang,LI Bo. Key technology and development research on big data of intelligent mine[J]. Coal Science and Technology,2019,47(3):66-74.
    [53] 王国法,杜毅博. 煤矿智能化标准体系框架与建设思路[J]. 煤炭科学技术,2020,48(1):1-9.

    WANG Guofa,DU Yibo. Coal mine intelligent standard system framework and construction ideas[J]. Coal Science and Technology,2020,48(1):1-9.
    [54] 张建明,曹文君,王景阳,等. 智能化煤矿信息基础设施标准体系研究[J]. 中国煤炭,2021,47(11):1-6.

    ZHANG Jianming,CAO Wenjun,WANG Jingyang,et al. Research on information infrastructure standard system for intelligent coal mine[J]. China Coal,2021,47(11):1-6.
    [55] 王淞,彭煜玮,兰海,等. 数据集成方法发展与展望[J]. 软件学报,2020,31(3):893-908.

    WANG Song,PENG Yuwei,LAN Hai,et al. Survey and prospect:data integration methodologies[J]. Journal of Software,2020,31(3):893-908.
    [56] 滕晓旭, 全厚春, 祁金才, 等. 矿山设备维修数据集成与管控系统研究[J]. 采矿技术, 2021, 21(5): 180-183.

    TENG Xiaoxu, QUAN Houchun, QI Jincai, et al. Research on data integration and control system for mining equipment maintenance[J]. Mining Technology, 2021, 21(5): 180-183.
    [57] 孙继平. 煤矿事故分析与煤矿大数据和物联网[J]. 工矿自动化,2015,41(3):1-5.

    SUN Jiping. Accident analysis and big data and Internet of things in coal mine[J]. Industry and Mine Automation,2015,41(3):1-5.
    [58] 郭一楠, 杨帆, 葛世荣, 等. 知识驱动的智采数字孪生主动管控模式[J/OL]. 煤炭学报: 1-12[2023-01-10]. DOI: 10.13225/j.cnki.jccs.2022.0223.

    GUO Yinan, YANG Fan, GE Shirong, et al. Novel knowledge-driven active management and control scheme of smart coal mining face with digital twin[J/OL]. Journal of China Coal Society: 1-12[2023-01-10]. DOI: 10.13225/j.cnki.jccs.2022.0223.
    [59] 丁恩杰,俞啸,夏冰,等. 矿山信息化发展及以数字孪生为核心的智慧矿山关键技术[J]. 煤炭学报,2022,47(1):564-578.

    DING Enjie,YU Xiao,XIA Bing,et al. Development of mine informatization and key technologies of intelligent mines[J]. Journal of China Coal Society,2022,47(1):564-578.
    [60] 张旸旸,刘增志,刘潇健,等. 以标准促进我国工业APP发展的几点建议[J]. 标准科学,2020(9):49-52.

    ZHANG Yangyang,LIU Zengzhi,LIU Xiaojian,et al. Suggestions on promoting the development of Chinese industrial APP with standards[J]. Standard Science,2020(9):49-52.
    [61] HUANG Ping, LIU Wei, LIU Xinlin, et al. Technology architecture of smart grid information security defense system[C]. International Conference on Applications and Techniques in Cyber Intelligence, 2020: 660-665.
  • 加载中
图(3) / 表(1)
计量
  • 文章访问数:  845
  • HTML全文浏览量:  62
  • PDF下载量:  92
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-22
  • 修回日期:  2023-03-31
  • 网络出版日期:  2023-04-27

目录

    /

    返回文章
    返回