Research summary on coal industry internet technology
-
摘要: 煤炭工业互联网是加速煤炭领域高质量发展的重要引擎,可有效驱动能源领域设备智能化、产业数字化。给出了煤炭工业互联网体系架构,从感知层、传输层、赋能平台、工业APP、信息安全5个方面分析了煤炭工业互联网技术研究现状和发展方向。感知层在实现超低功耗、精准感知、高可靠性、能量自动捕获等方面取得进步,但仍存在感知手段单一、易受环境因素影响等问题,目前还无法充分满足矿井泛在感知需求,可从新型传感器研发、低功耗和能量收集技术、抗电磁干扰技术、智能感知技术等方面进一步提高感知层智能化水平。传输层现有的以太网、4G、WiFi等技术无法满足智慧矿山高可靠、高带宽、低延迟的传输要求,5G技术可满足全矿井泛在感知需求,但在井下应用中仍存在最大射频功率受限、无法可靠应对井下应急场景等问题,因此目前井下还不能完全使用5G替代传统通信网络。赋能平台是煤炭工业互联网推动智能化的中枢和核心,指出大数据是赋能平台的关键要素,煤炭工业机理模型和诊断决策模型是赋能平台的灵魂,数字孪生技术可为煤炭行业生产、决策、管理等环节赋能。工业APP可为煤炭产业链各环节提供服务,帮助煤炭行业攻克高风险、工艺继承创新难、产业链协同难等难题,但是煤炭领域工业APP的发展应用仍不成熟。信息安全是煤矿智能化建设的保障,需要从物理信息安全、网络信息安全、系统信息安全、数据信息安全和应用信息安全等方面采取措施,提升安全防护水平。Abstract: The coal industry internet is an important engine to accelerate the high-quality development of the coal field. It can effectively drive the equipment intelligence and industry digitization in the energy field. The architecture of the coal industry internet is given. The research status and development direction of the coal industry internet technology are analyzed from five aspects: perception layer, transmission layer, empowerment platform, industrial APP, and information security. The perception layer has made progress in achieving ultra-low power consumption, precise perception, high reliability, and automatic energy capture. However, there are still problems such as single perception method and susceptibility to environmental factors. It cannot fully meet the needs of ubiquitous perception in mines. The intelligence level of the perception layer can be further improved through the development of new sensors, low-power and energy collection technologies, anti-electromagnetic interference technologies, and intelligent perception technologies. The existing Ethernet, 4G, WiFi and other technologies in the transmission layer cannot meet the high reliability, high bandwidth, and low latency transmission requirements of intelligent mines. 5G technology can meet the ubiquitous sensing requirements of the entire mine. However, there are still problems in underground applications such as limited maximum RF power and the incapability to reliably respond to underground emergency scenarios. Therefore, currently, 5G cannot fully replace traditional underground communication networks. The empowerment platform is the center and core of the coal industry internet to promote intelligence. It points out that big data is the key element of the empowerment platform. The mechanism model and diagnostic decision-making model of the coal industry are the soul of the empowerment platform. Digital twin technology can empower the production, decision-making, management and other links of the coal industry. Industrial APP can provide services for various links in the coal industry chain, and help the coal industry overcome challenges such as high risks, difficulty in process inheritance and innovation, and difficulty in industrial chain collaboration. However, the development and application of industrial APP in the coal industry are still immature. Information security is the guarantee for the intelligent construction of coal mines, and measures need to be taken from physical information security, network information security, system information security, data information security, and application information security to improve the level of security protection.
-
表 1 无线网络技术对比
Table 1. Comparison of mine wireless network technologies
传输技术 技术指标 优点 缺点 ZigBee 采用IEEE 802.15.4标准,传输距离从75 m至数百米 近距离,低复杂度,低功耗,低成本 性能较差,传输速率较低 4G 支持100 Mibit/s下载速率、50 Mibit/s上传速率 便捷高效,传输速率高,传输距离长 成本较高,功耗较高 WiFi 采用IEEE 802.11标准,传输速率为54 Mibit/s或更高,空旷地带无线传输距离为300 m 传输速率高,成本较低,较为可靠 覆盖范围受限,跨AP切换时延较大 LoRa 空旷地带传输距离达15 km,最高传输速率为600 KiB/s 广覆盖,低功耗,长距离 传输速率低 UWB 采用时间间隔极小(纳秒级)的脉冲进行通信 密度低,功率低,穿透力强,抗干扰效果好,传输速率高,定位精度高 传输距离短,缺少大规模商业应用 5G 要求最低速率为1 Gibit/s,时延为1 ms 高带宽,低时延,广连接 成本较高,井下应用存在限制 -
[1] 王国法,王虹,任怀伟,等. 智慧煤矿2025情景目标和发展路径[J]. 煤炭学报,2018,43(2):295-305.WANG Guofa,WANG Hong,REN Huaiwei,et al. 2025 scenarios and development path of intelligent coal mine[J]. Journal of China Coal Society,2018,43(2):295-305. [2] 王国法,任怀伟,赵国瑞,等. 煤矿智能化十大“痛点”解析及对策[J]. 工矿自动化,2021,47(6):1-11.WANG Guofa,REN Huaiwei,ZHAO Guorui,et al. Analysis and countermeasures of ten 'pain points' of intelligent coal mine[J]. Industry and Mine Automation,2021,47(6):1-11. [3] 康红普,王国法,王双明,等. 煤炭行业高质量发展研究[J]. 中国工程科学,2021,23(5):130-138.KANG Hongpu,WANG Guofa,WANG Shuangming,et al. High-quality development of China's coal industry[J]. Strategic Study of CAE,2021,23(5):130-138. [4] 王国法,刘峰,庞义辉,等. 煤矿智能化——煤炭工业高质量发展的核心技术支撑[J]. 煤炭学报,2019,44(2):349-357.WANG Guofa,LIU Feng,PANG Yihui,et al. Coal mine intellectualization:the core technology of high quality development[J]. Journal of China Coal Society,2019,44(2):349-357. [5] 王国法,赵国瑞,任怀伟. 智慧煤矿与智能化开采关键核心技术分析[J]. 煤炭学报,2019,44(1):34-41.WANG Guofa,ZHAO Guorui,REN Huaiwei. Analysis on key technologies of intelligent coal mine and intelligent mining[J]. Journal of China Coal Society,2019,44(1):34-41. [6] 王国法,范京道,徐亚军,等. 煤炭智能化开采关键技术创新进展与展望[J]. 工矿自动化,2018,44(2):5-12.WANG Guofa,FAN Jingdao,XU Yajun,et al. Innovation progress and prospect on key technologies of intelligent coal mining[J]. Industry and Mine Automation,2018,44(2):5-12. [7] 姜德义,魏立科,王翀,等. 智慧矿山边缘云协同计算技术架构与基础保障关键技术探讨[J]. 煤炭学报,2020,45(1):484-492.JIANG Deyi,WEI Like,WANG Chong,et al. Discussion on the technology architecture and key basic support technology for intelligent mine edge-cloud collaborative computing[J]. Journal of China Coal Society,2020,45(1):484-492. [8] 王国法,庞义辉,任怀伟. 智慧矿山技术体系研究与发展路径[J]. 金属矿山,2022(5):1-9.WANG Guofa,PANG Yihui,REN Huaiwei. Research and development path of smart mine technology system[J]. Metal Mine,2022(5):1-9. [9] 丁恩杰,金雷,陈迪. 互联网+感知矿山安全监控系统研究[J]. 煤炭科学技术,2017,45(1):129-134.DING Enjie,JIN Lei,CHEN Di. Study on safety monitoring and control system of internet+perception mine[J]. Coal Science and Technology,2017,45(1):129-134. [10] 李军,赵军. MEMS传感器的发展及其在煤矿井下的应用研究[J]. 煤炭技术,2014,33(7):238-240.LI Jun,ZHAO Jun. Development and application of MEMS sensor under coal mine[J]. Coal Technology,2014,33(7):238-240. [11] ZHAO Yong,LI Zhongqiang,DONG Yue. Design and experiments on a wide range fiber Bragg grating sensor for health monitoring of coal mines[J]. Optik,2014,125(20):6287-6290. doi: 10.1016/j.ijleo.2014.08.015 [12] REDDY N S, SAKETH M S, DHAR S. Review of sensor technology for mine safety monitoring systems: a holistic approach[C]. IEEE First International Conference on Control, Measurement and Instrumentation, Kolkata, 2016: 429-434. [13] 丁恩杰,施卫祖,张申,等. 矿山物联网顶层设计[J]. 工矿自动化,2017,43(9):1-11.DING Enjie,SHI Weizu,ZHANG Shen,et al. Top-down design of mine Internet of things[J]. Industry and Mine Automation,2017,43(9):1-11. [14] 李首滨,李森,张守祥,等. 综采工作面智能感知与智能控制关键技术与应用[J]. 煤炭科学技术,2021,49(4):28-39.LI Shoubin,LI Sen,ZHANG Shouxiang,et al. Key technology and application of intelligent perception and intelligent control in fully mechanized mining face[J]. Coal Science and Technology,2021,49(4):28-39. [15] 王继业,蒲天骄,仝杰,等. 能源互联网智能感知技术框架与应用布局[J]. 电力信息与通信技术,2020,18(4):1-14.WANG Jiye,PU Tianjiao,TONG Jie,et al. Intelligent perception technology framework and application layout of energy Internet[J]. Electric Power Information and Communication Technology,2020,18(4):1-14. [16] 赵小虎,张凯,赵志凯,等. 矿山物联网网络技术发展趋势与关键技术[J]. 工矿自动化,2018,44(4):1-7.ZHAO Xiaohu,ZHANG Kai,ZHAO Zhikai,et al. Developing trend and key technologies of network technology of mine Internet of things[J]. Industry and Mine Automation,2018,44(4):1-7. [17] 袁亮,俞啸,丁恩杰,等. 矿山物联网人−机−环状态感知关键技术研究[J]. 通信学报,2020,41(2):1-12.YUAN Liang,YU Xiao,DING Enjie,et al. Research on key technologies of human-machine-environment states perception in mine Internet of things[J]. Journal on Communications,2020,41(2):1-12. [18] 霍振龙. LoRa技术在矿井无线通信中的应用分析[J]. 工矿自动化,2017,43(10):34-37.HUO Zhenlong. Application analysis of LoRa technology in mine wireless communication[J]. Industry and Mine Automation,2017,43(10):34-37. [19] 孙继平. 矿井宽带无线传输技术研究[J]. 工矿自动化,2013,39(2):1-5.SUN Jiping. Research of mine wireless broadband transmission technology[J]. Industry and Mine Automation,2013,39(2):1-5. [20] 王国法,赵国瑞,胡亚辉. 5G技术在煤矿智能化中的应用展望[J]. 煤炭学报,2020,45(1):16-23.WANG Guofa,ZHAO Guorui,HU Yahui,et al. Application prospect of 5G technology in coal mine intelligence[J]. Journal of China Coal Society,2020,45(1):16-23. [21] 葛世荣,王世佳,曹波,等. 智能采运机组自主定位原理与技术[J]. 煤炭学报,2022,47(1):75-86.GE Shirong,WANG Shijia,CAO Bo,et al. Autonomous positioning principle and technology of intelligent shearer and conveyor[J]. Journal of China Coal Society,2022,47(1):75-86. [22] 杨健健,张强,吴淼,等. 巷道智能化掘进的自主感知及调控技术研究进展[J]. 煤炭学报,2020,45(6):2045-2055.YANG Jianjian,ZHANG Qiang,WU Miao,et al. Research progress of autonomous perception and control technology for intelligent heading[J]. Journal of China Coal Society,2020,45(6):2045-2055. [23] 范京道,闫振国,李川. 基于5G技术的煤矿智能化开采关键技术探索[J]. 煤炭科学技术,2020,48(7):92-97.FAN Jingdao,YAN Zhenguo,LI Chuan. Exploration of intelligent coal mining key technology based on 5G technology[J]. Coal Science and Technology,2020,48(7):92-97. [24] 毛馨凯,刘万远. 5G技术在智能采煤工作面的应用研究[J]. 工矿自动化,2021,47(增刊1):39-41,50.MAO Xinkai,LIU Wanyuan. Research on application of 5G technology in intelligent coal mining face[J]. Industry and Mine Automation,2021,47(S1):39-41,50. [25] 霍振龙,张袁浩. 5G通信技术及其在煤矿的应用构想[J]. 工矿自动化,2020,46(3):1-5.HUO Zhenlong,ZHANG Yuanhao. 5G communication technology and its application conception in coal mine[J]. Industry and Mine Automation,2020,46(3):1-5. [26] 王睿,张克落. 5G网络切片综述[J]. 南京邮电大学学报(自然科学版),2018,38(5):19-27.WANG Rui,ZHANG Keluo. Survey of 5G network slicing[J]. Journal of Nanjing University of Posts and Telecommunications(Natural Science Edition),2018,38(5):19-27. [27] 刘伟芳,吴迪. 国内外露天矿山无人驾驶技术发展现状[J]. 露天采矿技术,2020,35(4):32-34,38.LIU Weifang,WU Di. Technology development status of unmanned driving in open-pit mines at home and abroad[J]. Opencast Mining Technology,2020,35(4):32-34,38. [28] 孙继平. 煤矿智能化与矿用5G[J]. 工矿自动化,2020,46(8):1-7.SUN Jiping. Coal mine intelligence and mine-used 5G[J]. Industry and Mine Automation,2020,46(8):1-7. [29] 李君,邱君降,窦克勤. 工业互联网平台参考架构、核心功能与应用价值研究[J]. 制造业自动化,2018,40(6):103-106,126.LI Jun,QIU Junjiang,DOU Keqin. Research on the reference architecture,core function and application value of industrial internet platform[J]. Manufacturing Automation,2018,40(6):103-106,126. [30] 丁恩杰,俞啸,廖玉波,等. 基于物联网的矿山机械设备状态智能感知与诊断[J]. 煤炭学报,2020,45(6):2308-2319.DING Enjie,YU Xiao,LIAO Yubo,et al. Key technology of mine equipment state perception and online diagnosis under Internet of things[J]. Journal of China Coal Society,2020,45(6):2308-2319. [31] 张建中,郭军. 智慧矿山工业互联网技术架构探讨[J]. 煤炭科学技术,2022,50(5):238-246.ZHANG Jianzhong,GUO Jun. Discussion on Internet technology framework of smart mine industry[J]. Coal Science and Technology,2022,50(5):238-246. [32] 吴群英,蒋林,王国法,等. 智慧矿山顶层架构设计及其关键技术[J]. 煤炭科学技术,2020,48(7):80-91.WU Qunying,JIANG Lin,WANG Guofa,et al. Top-level architecture design and key technologies of smart mine[J]. Coal Science and Technology,2020,48(7):80-91. [33] 李首滨. 煤炭工业互联网及其关键技术[J]. 煤炭科学技术,2020,48(7):98-108.LI Shoubin. Coal industry Internet and its key technologies[J]. Coal Science and Technology,2020,48(7):98-108. [34] 毛善君,刘孝孔,雷小锋,等. 智能矿井安全生产大数据集成分析平台及其应用[J]. 煤炭科学技术,2018,46(12):169-176.MAO Shanjun,LIU Xiaokong,LEI Xiaofeng,et al. Research and application on big data integration analysis platform for intelligent mine safety production[J]. Coal Science and Technology,2018,46(12):169-176. [35] 葛世荣. 煤矿智采工作面概念及系统架构研究[J]. 工矿自动化,2020,46(4):1-9.GE Shirong. Research on concept and system architecture of smart mining workface in coal mine[J]. Industry and Mine Automation,2020,46(4):1-9. [36] 葛世荣,胡而已,裴文良. 煤矿机器人体系及关键技术[J]. 煤炭学报,2020,45(1):455-463.GE Shirong,HU Eryi,PEI Wenliang. Classification system and key technology of coal mine robot[J]. Journal of China Coal Society,2020,45(1):455-463. [37] 葛世荣,张帆,王世博,等. 数字孪生智采工作面技术架构研究[J]. 煤炭学报,2020,45(6):1925-1936.GE Shirong,ZHANG Fan,WANG Shibo,et al. Digital twin for smart coal mining workface:technological frame and construction[J]. Journal of China Coal Society,2020,45(6):1925-1936. [38] 葛世荣,郝尚清,张世洪,等. 我国智能化采煤技术现状及待突破关键技术[J]. 煤炭科学技术,2020,48(7):28-46.GE Shirong,HAO Shangqing,ZHANG Shihong,et al. Status of intelligent coal mining technology and potential key technologies in China[J]. Coal Science and Technology,2020,48(7):28-46. [39] 蓝航,陈东科,毛德兵. 我国煤矿深部开采现状及灾害防治分析[J]. 煤炭科学技术,2016,44(1):39-46.LAN Hang,CHEN Dongke,MAO Debing. Current status of deep mining and disaster prevention in China[J]. Coal Science and Technology,2016,44(1):39-46. [40] 付华,谢森,徐耀松,等. 基于ACC−ENN算法的煤矿瓦斯涌出量动态预测模型研究[J]. 煤炭学报,2014,39(7):1296-1301.FU Hua,XIE Sen,XU Yaosong,et al. Gas emission dynamic prediction model of coal mine based on ACC-ENN algorithm[J]. Journal of China Coal Society,2014,39(7):1296-1301. [41] 乔伟,靳德武,王皓,等. 基于云服务的煤矿水害监测大数据智能预警平台构建[J]. 煤炭学报,2020,45(7):2619-2627.QIAO Wei,JIN Dewu,WANG Hao,et al. Development of big data intelligent early warning platform for coal mine water hazard monitoring based on cloud service[J]. Journal of China Coal Society,2020,45(7):2619-2627. [42] 王益伟. 大水矿山地下水致灾机理及防治研究[D]. 长沙: 中南大学, 2014.WANG Yiwei. Research on disaster mechanism & prevention and control induced by groundwater in the groundwater abundant mines[D]. Changsha: Central South University, 2014. [43] 张志龙. 矿井水致灾条件与致灾机理分析及应用[J]. 煤炭科学技术,2013,41(增刊2):222-225,228.ZHANG Zhilong. Application and analysis on condition and mechanism caused by mine water disaster[J]. Coal Science and Technology,2013,41(S2):222-225,228. [44] 朱宗奎,徐智敏,孙亚军. 矿井水害的临突监测指标及预警模型[J]. 煤矿安全,2014,45(1):170-172.ZHU Zongkui,XU Zhimin,SUN Yajun. Critical water inrush monitoring index and early-warning model of mine water disaster[J]. Safety in Coal Mines,2014,45(1):170-172. [45] 邓军,李贝,王凯,等. 我国煤火灾害防治技术研究现状及展望[J]. 煤炭科学技术,2016,44(10):1-7,101.DENG Jun,LI Bei,WANG Kai,et al. Research status and outlook on prevention and control technology of coal fire disaster in China[J]. Coal Science and Technology,2016,44(10):1-7,101. [46] 李翠平,曹志国,钟媛. 矿井火灾的场量模型构建及其可视化仿真[J]. 煤炭学报,2015,40(4):902-908.LI Cuiping,CAO Zhiguo,ZHONG Yuan. Field variables modeling and visualization simulation of fire disaster in underground mine[J]. Journal of China Coal Society,2015,40(4):902-908. [47] 贾宝新,陈浩,潘一山,等. 多参量综合指标冲击地压预测技术研究[J]. 防灾减灾工程学报,2019,39(2):330-337.JIA Baoxin,CHEN Hao,PAN Yishan,et al. Rock burst prediction technology of multi-parameters synthetic index[J]. Journal of Disaster Prevention and Mitigation Engineering,2019,39(2):330-337. [48] 王浩宇. 基于数据的煤矿主通风机故障诊断方法研究[D]. 徐州: 中国矿业大学, 2017.WANG Haoyu. Research on fault diagnosis method of mine main ventilator based on data[D]. Xuzhou: China University of Mining and Technology, 2017. [49] 任怀伟,王国法,赵国瑞,等. 智慧煤矿信息逻辑模型及开采系统决策控制方法[J]. 煤炭学报,2019,44(9):2923-2935.REN Huaiwei,WANG Guofa,ZHAO Guorui,et al. Smart coal mine logic model and decision control method of mining system[J]. Journal of China Coal Society,2019,44(9):2923-2935. [50] 路正雄,郭卫,张帆,等. 基于数据驱动的综采装备协同控制系统架构及关键技术[J]. 煤炭科学技术,2020,48(7):195-205.LU Zhengxiong,GUO Wei,ZHANG Fan,et al. Collaborative control system architecture and key technologies of fully-mechanized mining equipment based on data drive[J]. Coal Science and Technology,2020,48(7):195-205. [51] 普亚松,郭德伟,张文斌. 故障诊断技术在煤矿机械设备中的应用[J]. 工矿自动化,2015,41(4):36-39.PU Yasong,GUO Dewei,ZHANG Wenbin. Application of fault diagnosis technologies in coal mine machinery[J]. Industry and Mine Automation,2015,41(4):36-39. [52] 崔亚仲,白明亮,李波. 智能矿山大数据关键技术与发展研究[J]. 煤炭科学技术,2019,47(3):66-74.CUI Yazhong,BAI Mingliang,LI Bo. Key technology and development research on big data of intelligent mine[J]. Coal Science and Technology,2019,47(3):66-74. [53] 王国法,杜毅博. 煤矿智能化标准体系框架与建设思路[J]. 煤炭科学技术,2020,48(1):1-9.WANG Guofa,DU Yibo. Coal mine intelligent standard system framework and construction ideas[J]. Coal Science and Technology,2020,48(1):1-9. [54] 张建明,曹文君,王景阳,等. 智能化煤矿信息基础设施标准体系研究[J]. 中国煤炭,2021,47(11):1-6.ZHANG Jianming,CAO Wenjun,WANG Jingyang,et al. Research on information infrastructure standard system for intelligent coal mine[J]. China Coal,2021,47(11):1-6. [55] 王淞,彭煜玮,兰海,等. 数据集成方法发展与展望[J]. 软件学报,2020,31(3):893-908.WANG Song,PENG Yuwei,LAN Hai,et al. Survey and prospect:data integration methodologies[J]. Journal of Software,2020,31(3):893-908. [56] 滕晓旭, 全厚春, 祁金才, 等. 矿山设备维修数据集成与管控系统研究[J]. 采矿技术, 2021, 21(5): 180-183.TENG Xiaoxu, QUAN Houchun, QI Jincai, et al. Research on data integration and control system for mining equipment maintenance[J]. Mining Technology, 2021, 21(5): 180-183. [57] 孙继平. 煤矿事故分析与煤矿大数据和物联网[J]. 工矿自动化,2015,41(3):1-5.SUN Jiping. Accident analysis and big data and Internet of things in coal mine[J]. Industry and Mine Automation,2015,41(3):1-5. [58] 郭一楠, 杨帆, 葛世荣, 等. 知识驱动的智采数字孪生主动管控模式[J/OL]. 煤炭学报: 1-12[2023-01-10]. DOI: 10.13225/j.cnki.jccs.2022.0223.GUO Yinan, YANG Fan, GE Shirong, et al. Novel knowledge-driven active management and control scheme of smart coal mining face with digital twin[J/OL]. Journal of China Coal Society: 1-12[2023-01-10]. DOI: 10.13225/j.cnki.jccs.2022.0223. [59] 丁恩杰,俞啸,夏冰,等. 矿山信息化发展及以数字孪生为核心的智慧矿山关键技术[J]. 煤炭学报,2022,47(1):564-578.DING Enjie,YU Xiao,XIA Bing,et al. Development of mine informatization and key technologies of intelligent mines[J]. Journal of China Coal Society,2022,47(1):564-578. [60] 张旸旸,刘增志,刘潇健,等. 以标准促进我国工业APP发展的几点建议[J]. 标准科学,2020(9):49-52.ZHANG Yangyang,LIU Zengzhi,LIU Xiaojian,et al. Suggestions on promoting the development of Chinese industrial APP with standards[J]. Standard Science,2020(9):49-52. [61] HUANG Ping, LIU Wei, LIU Xinlin, et al. Technology architecture of smart grid information security defense system[C]. International Conference on Applications and Techniques in Cyber Intelligence, 2020: 660-665.