留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于UWB的PDOA与TOF煤矿井下联合定位方法

郭爱军

郭爱军. 基于UWB的PDOA与TOF煤矿井下联合定位方法[J]. 工矿自动化,2023,49(3):137-141.  doi: 10.13272/j.issn.1671-251x.18078
引用本文: 郭爱军. 基于UWB的PDOA与TOF煤矿井下联合定位方法[J]. 工矿自动化,2023,49(3):137-141.  doi: 10.13272/j.issn.1671-251x.18078
GUO Aijun. A joint positioning method of PDOA and TOF in coal mines based on UWB[J]. Journal of Mine Automation,2023,49(3):137-141.  doi: 10.13272/j.issn.1671-251x.18078
Citation: GUO Aijun. A joint positioning method of PDOA and TOF in coal mines based on UWB[J]. Journal of Mine Automation,2023,49(3):137-141.  doi: 10.13272/j.issn.1671-251x.18078

基于UWB的PDOA与TOF煤矿井下联合定位方法

doi: 10.13272/j.issn.1671-251x.18078
基金项目: 国家能源集团科技创新项目(GJNY2030XDXM-19-06.1);国家重点研发计划项目(2017YFC0804303)。
详细信息
    作者简介:

    郭爱军(1970—),男,内蒙古包头人,教授级高级工程师,现主要从事矿井精确定位方面的工作,E-mail:wlmlgaj@163.com

  • 中图分类号: TD655

A joint positioning method of PDOA and TOF in coal mines based on UWB

  • 摘要: 煤矿井下人员和车辆精确定位是煤矿安全高效生产的重要保障。目前矿井人员和车辆精确定位主要采用超宽带(UWB)无线通信技术,其中仅采用飞行时间(TOF)的定位方法需2个定位分站或天线联合测距和定向,存在天线间距大、不便于安装维护、定位误差大等问题。针对上述问题,提出了应用于煤矿巷道一维定位场景的基于UWB的到达相位差(PDOA)与TOF煤矿井下联合定位方法。该方法通过TOF测量定位卡与定位分站之间的距离,通过PDOA判断定位卡的方位,再根据测得的定位卡与定位分站之间的距离和方位,对定位卡进行定位。该方法根据从定位卡发送的无线电信号到达定位分站的2根天线的相位差判断定位卡的到达角度(AOA),不需要很大的天线间距即可确定定位卡的方位,缩短了定位分站的2根天线之间的距离,可将2根天线一体化,便于安装维护,提高了定位精度。煤矿井下测试结果表明,该方法定位精度在15 cm以内;在200 m测试距离范围内,定位精度不受距离远近影响;TOF测距数值稳定在相对其均值±10 cm的范围内,具有很好的稳定性。

     

  • 图  1  TOF测距原理

    Figure  1.  TOF ranging principle

    图  2  定位分站定向原理

    Figure  2.  Directional principle of positioning substation

    图  3  基于PDOA的AOA估计原理

    Figure  3.  Principle of AOA estimation based on PDOA

    图  4  棒状天线与平面天线对比

    Figure  4.  Comparison of rod antenna and plane antenna

    图  5  巷道断面

    Figure  5.  Roadway section

    图  6  PDOA方向测试和TOF精度测试布置

    Figure  6.  Layout of PDOA directional test and TOF precision test

    图  7  PDOA方向测试结果

    Figure  7.  PDOA directional test results

    图  8  误差随距离变化曲线

    Figure  8.  Curve of error with distance

    图  9  离差统计

    Figure  9.  Deviation statistics

    图  10  离差累计概率曲线

    Figure  10.  Cumulative probability curve of deviation

    表  1  TOF精度测试数据

    Table  1.   TOF precision test data

    真实距离/m测量均值/m绝对误差/m相对误差/%
    1.9381.8950.0432.22
    2.9222.8550.0672.29
    4.7794.8290.0501.05
    8.1868.2060.0200.24
    10.98410.8740.1101.00
    15.33815.1980.1400.91
    20.72620.6160.1100.53
    25.44625.5410.0950.37
    30.92130.9520.0310.10
    40.76740.6960.0710.17
    61.73161.6270.1040.17
    82.21782.2290.0120.01
    100.479100.3980.0810.08
    122.302122.3760.0740.06
    139.672139.5570.1150.08
    159.092158.9510.1410.09
    177.285177.3980.1130.06
    198.489198.3500.1390.07
    下载: 导出CSV
  • [1] 孙继平. 煤矿井下安全避险“六大系统”的作用和配置方案[J]. 工矿自动化,2010,36(11):1-4.

    SUN Jiping. Effect and configuration of "six systems" for safe act of rescue of coal mine underground[J]. Industry and Mine Automation,2010,36(11):1-4.
    [2] 孙继平. 煤矿井下人员位置监测技术与系统[J]. 煤炭科学技术,2010,38(11):1-5.

    SUN Jiping. Personnel position monitoring technology and system in underground mine[J]. Coal Science and Technology,2010,38(11):1-5.
    [3] AQ 6210—2007 煤矿井下作业人员管理系统通用技术条件[S].

    AQ 6210-2007 General technical conditions of the system for the management of the underground personnel in a coal mine[S].
    [4] AQ 1048—2007 煤矿井下作业人员管理系统使用与管理规范[S].

    AQ 1048-2007 Specification for the usage and management of the system for the management of the underground personnel in a coal mine[S].
    [5] 孙继平. 煤矿信息化自动化新技术与发展[J]. 煤炭科学技术,2016,44(1):19-23,83.

    SUN Jiping. New technology and development of mine informatization automation[J]. Coal Science and Technology,2016,44(1):19-23,83.
    [6] 孙继平. 煤矿智能化与矿用5G[J]. 工矿自动化,2020,46(8):1-7.

    SUN Jiping. Coal mine intelligence and mine-used 5G[J]. Industry and Mine Automation,2020,46(8):1-7.
    [7] 孙继平. 煤矿智能化与矿用5G和网络硬切片技术[J]. 工矿自动化,2021,47(8):1-6.

    SUN Jiping. Coal mine intelligence,mine 5G and network hard slicing technology[J]. Industry and Mine Automation,2021,47(8):1-6.
    [8] 孙继平,程加敏. 煤矿智能化信息综合承载网[J]. 工矿自动化,2022,48(3):1-4,90.

    SUN Jiping,CHENG Jiamin. Coal mine intelligent information comprehensive carrier network[J]. Journal of Mine Automation,2022,48(3):1-4,90.
    [9] 孙继平, 江嬴. 矿井车辆无人驾驶关键技术研究[J]. 工矿自动化, 2022, 48(5): 1-5, 31.

    SUN Jiping, JIANG Ying. Research on key technologies of mine unmanned vehicle[J]. Journal of Mine Automation, 2022, 48(5): 1-5, 31.
    [10] 符世琛,李一鸣,张敏骏,等. 基于UWB信号的TW−TOF测距技术在狭长巷道中的精度测试实验研究[J]. 煤炭技术,2017,36(3):246-248.

    FU Shichen,LI Yiming,ZHANG Minjun,et al. Accuracy testing experiment in narrow roadway based on TW-TOF ranging technique of UWB signals[J]. Coal Technology,2017,36(3):246-248.
    [11] 刘清. 基于超宽带技术的采煤机定位系统设计[J]. 煤炭科学技术,2016,44(11):132-135.

    LIU Qing. Design on positioning system of shearer based on ultra wide band technology[J]. Coal Science and Technology,2016,44(11):132-135.
    [12] 孙继平. 煤矿安全生产监控与通信技术[J]. 煤炭学报,2010,35(11):1925-1929.

    SUN Jiping. Technologies of monitoring and communication in the coal mine[J]. Journal of China Coal Society,2010,35(11):1925-1929.
    [13] 孙继平. 矿井宽带无线传输技术研究[J]. 工矿自动化,2013,39(2):1-5.

    SUN Jiping. Research of mine wireless broadband transmission technology[J]. Industry and Mine Automation,2013,39(2):1-5.
    [14] 孙继平. 煤矿事故特点与煤矿通信、人员定位及监视新技术[J]. 工矿自动化,2015,41(2):1-5.

    SUN Jiping. Characteristics of coal mine accidents and new technologies of coal mine communication,personnel positioning and monitoring[J]. Industry and Mine Automation,2015,41(2):1-5.
    [15] 车志平. 基于TOF测距的无线传感器网络定位技术研究[D]. 大连: 大连理工大学, 2016.

    CHE Zhiping. Research of localization technology based on TOF ranging in wireless sensor network[D]. Dalian: Dalian University of Technology, 2016.
    [16] 常华伟,王福豹,严国强,等. 无线传感器网络的TOF测距方法研究[J]. 现代电子技术,2011,34(1):35-38.

    CHANG Huawei,WANG Fubao,YAN Guoqiang,et al. TOF ranging method for wireless sensor networks[J]. Modern Electronics Technique,2011,34(1):35-38.
    [17] MOK E,XIA Linyuan,RETSCHER G,et al. A case study on the feasibility and performance of an UWB-AoA real time location system for resources management of civil construction projects[J]. Journal of Applied Geodesy,2010,4(1):23-32.
    [18] JACHIMCZYK B,DZIAK D,KULESZA W J. Customization of UWB 3D-RTLS based on the new uncertainty model of the AoA ranging technique[J]. Sensors,2017,17(2):227-252. doi: 10.3390/s17020227
    [19] DOTLIC I, CONNELL A, MA Hang, et al. Angle of arrival estimation using decawave DW1000 integrated circuits[C]. 14th Workshop on Positioning, Navigation and Communications, Bremen, 2017. DOI: 10.1109/WPNC.2017.8250079.
    [20] 孙继平. 《煤矿安全规程》安全监控与人员位置监测修订意见[J]. 工矿自动化,2014,40(6):1-7.

    SUN Jiping. Proposal of revision for safety monitoring and control and personnel position monitoring of Coal Mine Safety Regulation[J]. Industry and Mine Automation,2014,40(6):1-7.
    [21] 孙继平. 2016年版《煤矿安全规程》监控与通信条款解析[J]. 工矿自动化,2016,42(5):1-8.

    SUN Jiping. Explanations for part of monitoring and communication of Coal Mine Safety Regulations of 2016 Edition[J]. Industry and Mine Automation,2016,42(5):1-8.
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  773
  • HTML全文浏览量:  56
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-13
  • 修回日期:  2023-03-17
  • 网络出版日期:  2023-03-27

目录

    /

    返回文章
    返回