Research on the safety threshold of radio wave explosion-proof
-
摘要: 大功率无线电波会点燃爆炸性气体。因此,需合理设置无线电发射器发射的无线电波防爆安全功率和能量阈值,限制无线电发射器发射的无线电波功率和能量。欧洲标准CLC/TR 50427:2004《Assessment of inadvertent ignition of flammable atmospheres by radio-frequency radiation-Guide》规定的无线电波防爆安全功率和能量阈值是点火功率和能量阈值。国家标准GB/T 3836.1—2021《爆炸性环境 第1部分:设备 通用要求》和国际标准IEC 60079-0:2017《Explosive atmospheres-Part 0:Equipment-General requirements》直接引用欧洲标准CLC/TR 50427:2004规定的无线电波防爆安全功率和能量阈值,但错误地将连续无线电波防爆安全点火功率阈值修改为发射器的有效输出功率与天线增益的乘积,从而造成连续无线电波防爆安全发射功率阈值降低;在传输衰减和接收灵敏度一定的条件下,降低了无线传输距离,不利于矿井无线通信系统和人员定位系统的推广应用。因此,国家标准GB/T 3836.1—2021和国际标准IEC 60079-0:2017规定的连续无线电波防爆安全功率阈值应为点火功率阈值,而不是发射器的有效输出功率与天线增益的乘积。Abstract: The powerful radio waves can ignite explosive gases. Therefore, it is necessary to reasonably set the radio wave explosion-proof safety power and energy threshold emitted by the radio transmitter to limit the radio wave power and energy emitted by the radio transmitter. The radio wave explosion-proof safety power and energy thresholds specified in European Standard CLC/TR 50427:2004 Assessment of inadvertent ignition of flammable atmospheres by radio-frequency radiation-Guide are the ignition power and energy threshold. The national standard GB/T 3836.1-2021 Explosive atmospheres-Part 1: Equipment-General requirements and the international standard IEC 60079-0:2017 Explosive atmospheres-Part 0: Equipment-General requirements directly cite the radio wave explosion-proof safe power and energy threshold specified in the European standard CLC/TR 50427:2004. But the continuous radio wave explosion-proof safe ignition power threshold is incorrectly modified as the product of the effective output power of the transmitter and the antenna gain. This leads to the reduction of the continuous radio wave explosion-proof safe transmission power threshold. Under certain transmission attenuation and reception sensitivity conditions, the wireless transmission distance is reduced. This is not conducive to the promotion and application of mine wireless communication system and personnel positioning system. Therefore, the safe power threshold for continuous radio wave explosion-proof specified in national standard GB/T 3836.1-2021 and international standard IEC 60079-0:2017 should be the ignition power threshold, not the product of the effective output power of the transmitter and the antenna gain.
-
Key words:
- radio wave /
- explosion-proof safety /
- energy threshold /
- power threshold /
- ignition power
-
表 1 GB/T 3836.1—2021规定的连续无线电波防爆安全功率阈值
Table 1. Explosion-proof safety power threshold of continuous radio wave specified in GB/T 3836.1-2021
设备类别 连续无线电波防爆
安全功率阈值/W热起燃时间
(平均时间)/μsI 6 200 IIA 6 100 IIB 3.5 80 IIC 2 20 III 6 200 表 2 GB/T 3836.1—2021规定的脉冲式无线电波防爆安全能量阈值
Table 2. Explosion-proof safety energy threshold of pulsed radio wave specified in GB/T 3836.1-2021
设备类别 脉冲式无线电波防爆安全能量阈值/μJ I 1 500 IIA 950 IIB 250 IIC 50 III 1 500 表 3 CLC/TR 50427:2004规定的不同爆炸性气体环境类别的代表性气体
Table 3. Representative gases of different explosive gas environment categories specified in CLC/TR 50427:2004
环境类别 代表性气体 I 甲烷 IIA 丙烷 IIB 乙烯 IIC 氢气 表 4 CLC/TR 50427:2004规定的连续无线电波防爆安全功率阈值
Table 4. Explosion-proof safety power threshold of continuous radio wave specified in CLC/TR 50427:2004
环境类别 连续无线电波防爆
安全功率阈值/W热起燃时间
(平均时间)/μsI 6(对于细长结构,例如起重机);
8(对于其他所有结构)200 IIA 6 100 IIB 3.5 80 IIC 2 20 表 5 CLC/TR 50427:2004中规定的脉冲式无线电波防爆安全能量阈值
Table 5. Explosion-proof safety energy threshold of pulsed radio wave specified in CLC/TR 50427:2004
环境类别 脉冲式无线电波防爆安全能量阈值/μJ I 1 500 IIA 950 IIB 250 IIC 50 -
[1] 孙继平. 煤矿机器人电气安全技术研究[J]. 煤炭科学技术,2019,47(4):1-6.SUN Jiping. Research on electrical safety technology of coal mine robot[J]. Coal Science and Technology,2019,47(4):1-6. [2] EXCELL P S, BUTCHER G H, HOWSON D P. Towards a safety standard for radiofrequency hazards to flammable mixtures-progress and problems[C]. IEEE International Symposium on Electromagnetic Compatibility, San Diego, 1979: 1-5. [3] BURSTOW D J,LOVELAND R J,TOMLINSON R,et al. Radio frequency ignition hazards[J]. Radio and Electronic Engineer,1981,51(4):151-169. doi: 10.1049/ree.1981.0021 [4] HOWSON D P,EXCELL P S,BUTCHER G H. Ignition of flammable gas/air mixtures by sparks from 2 MHz and 9 MHz sources[J]. Radio and Electronic Engineer,1981,51(4):170-174. doi: 10.1049/ree.1981.0022 [5] MADDOCKS A J,JACKSON G A. Measurements of radio frequency voltage and power induced in structures on the St Fergus gas terminals[J]. Radio and Electronic Engineer,1981,51(4):187-194. doi: 10.1049/ree.1981.0024 [6] ROBERTSON S S J,LOVELAND R J. Radio-frequency ignition hazards:a review[J]. Physical Science,Measurement and Instrumentation,Management and Education-Reviews,IEE Proceedings A,1981,128(9):607-614. [7] JAMES R A,EXCELL P S,KELLER A Z. Probabilistic factors in radio-frequency ignition and detonation hazards analyses[J]. Reliability Engineering,1987,17(2):139-153. doi: 10.1016/0143-8174(87)90012-6 [8] EXCELL P S,JAMES R A,KELLER A Z. Strategic problems in the drafting and implementation of safety guides for the prevention of radio frequency radiation hazards[J]. International Journal of Quality & Reliability Management,1988,5(5):47-61. [9] 孙继平,江嬴. 矿井车辆无人驾驶关键技术研究[J]. 工矿自动化,2022,48(5):1-5,31.SUN Jiping,JIANG Ying. Research on key technologies of mine unmanned vehicle[J]. Journal of Mine Automation,2022,48(5):1-5,31. [10] 孙继平,徐卿. 矿井无线中继应急通信系统实现方法[J]. 工矿自动化,2021,47(5):1-8.SUN Jiping,XU Qing. Implementation method of mine wireless relay emergency communication system[J]. Industry and Mine Automation,2021,47(5):1-8. [11] 孙继平,张高敏. 矿井应急通信系统[J]. 工矿自动化,2019,45(8):1-5.SUN Jiping,ZHANG Gaomin. Mine emergency communication system[J]. Industry and Mine Automation,2019,45(8):1-5. [12] 孙继平. 煤矿智能化与矿用5G[J]. 工矿自动化,2020,46(8):1-7.SUN Jiping. Coal mine intelligence and mine-used 5G[J]. Industry and Mine Automation,2020,46(8):1-7. [13] 孙继平,张高敏. 矿用5G频段选择及天线优化设置研究[J]. 工矿自动化,2020,46(5):1-7.SUN Jiping,ZHANG Gaomin. Research on 5G frequency band selection and antenna optimization setting in coal mine[J]. Industry and Mine Automation,2020,46(5):1-7. [14] 孙继平,陈晖升. 智慧矿山与5G和WiFi6[J]. 工矿自动化,2019,45(10):1-4. doi: 10.13272/j.issn.1671-251x.17517SUN Jiping,CHEN Huisheng. Smart mine with 5G and WiFi6[J]. Industry and Mine Automation,2019,45(10):1-4. doi: 10.13272/j.issn.1671-251x.17517 [15] 刘晓阳,马新彦,刘坤,等. 矿井5G电磁波辐射能量安全性研究[J]. 工矿自动化,2021,47(7):85-91.LIU Xiaoyang,MA Xinyan,LIU Kun,et al. Research on the safety of 5G electromagnetic wave radiation energy in coal mine[J]. Industry and Mine Automation,2021,47(7):85-91. [16] MENG Jijian. Research on wireless power transmission in coal mine based on explosion-proof safety[C]. IEEE 4th Advanced Information Management, Communicates, Electronic and Automation Control Conference, Chongqing, 2021: 1700-1704. [17] 郑小磊,梁宏. 煤矿5G通信系统安全技术要求和检验方法[J]. 工矿自动化,2021,47(3):9-13.ZHENG Xiaolei,LIANG Hong. Safety technical requirements and inspection methods of coal mine 5G communication system[J]. Industry and Mine Automation,2021,47(3):9-13. [18] 张勇. 煤矿井下无线射频近场谐振耦合防爆电磁能仿真分析[J]. 煤矿安全,2022,53(8):134-138.ZHANG Yong. Simulation analysis of explosion-proof electromagnetic energy coupled with radio frequency near field resonance in underground coal mine[J]. Safety in Coal Mines,2022,53(8):134-138. [19] 邵水才,郭旭东,彭铭,等. 煤矿井下无线传输分析方法[J]. 工矿自动化,2022,48(10):123-128.SHAO Shuicai,GUO Xudong,PENG Ming,et al. Coal mine underground wireless transmission analysis method[J]. Journal of Mine Automation,2022,48(10):123-128. [20] 丁序海,潘涛,彭铭,等. 煤矿井下无线电波对人体的影响[J]. 工矿自动化,2022,48(11):84-92,144.DING Xuhai,PAN Tao,PENG Ming,et al. Influence of underground radio wave on human body in coal mine[J]. Journal of Mine Automation,2022,48(11):84-92,144. [21] 梁伟锋,孙继平,彭铭,等. 煤矿井下无线电波防爆安全功率阈值研究[J]. 工矿自动化,2022,48(12):123-128,163.LIANG Weifeng,SUN Jiping,PENG Ming,et al. Research on safe power threshold of radio wave explosion-proof in coal mine[J]. Journal of Mine Automation,2022,48(12):123-128,163.