留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

无线电波防爆安全阈值研究

孙继平 彭铭 潘涛 张高敏

孙继平,彭铭,潘涛,等. 无线电波防爆安全阈值研究[J]. 工矿自动化,2023,49(2):1-5.  doi: 10.13272/j.issn.1671-251x.18072
引用本文: 孙继平,彭铭,潘涛,等. 无线电波防爆安全阈值研究[J]. 工矿自动化,2023,49(2):1-5.  doi: 10.13272/j.issn.1671-251x.18072
SUN Jiping, PENG Ming, PAN Tao, et al. Research on the safety threshold of radio wave explosion-proof[J]. Journal of Mine Automation,2023,49(2):1-5.  doi: 10.13272/j.issn.1671-251x.18072
Citation: SUN Jiping, PENG Ming, PAN Tao, et al. Research on the safety threshold of radio wave explosion-proof[J]. Journal of Mine Automation,2023,49(2):1-5.  doi: 10.13272/j.issn.1671-251x.18072

无线电波防爆安全阈值研究

doi: 10.13272/j.issn.1671-251x.18072
基金项目: 国家重点研发计划项目(2016YFC0801800)。
详细信息
    作者简介:

    孙继平(1958—),男,山西翼城人,教授,博士,博士研究生导师,中国矿业大学(北京)原副校长;获国家科技进步奖和技术发明奖二等奖4项(第1完成人3项);作为第1完成人获省部级科技进步特等奖和一等奖8项;作为第1完成人主持制定中华人民共和国煤炭行业、安全生产行业和能源行业标准38项;作为第1发明人获国家授权发明专利100余件;主持制定《煤矿安全规程》第十一章“监控与通信”;被SCI和EI检索的第1作者或独立完成论文100余篇;作为第1作者或独立完成著作12部;作为国务院煤矿事故调查专家组组长参加了10起煤矿特别重大事故调查工作;E-mail:sjp@cumtb.edu.cn

  • 中图分类号: TD655

Research on the safety threshold of radio wave explosion-proof

  • 摘要: 大功率无线电波会点燃爆炸性气体。因此,需合理设置无线电发射器发射的无线电波防爆安全功率和能量阈值,限制无线电发射器发射的无线电波功率和能量。欧洲标准CLC/TR 50427:2004《Assessment of inadvertent ignition of flammable atmospheres by radio-frequency radiation-Guide》规定的无线电波防爆安全功率和能量阈值是点火功率和能量阈值。国家标准GB/T 3836.1—2021《爆炸性环境 第1部分:设备 通用要求》和国际标准IEC 60079-0:2017《Explosive atmospheres-Part 0:Equipment-General requirements》直接引用欧洲标准CLC/TR 50427:2004规定的无线电波防爆安全功率和能量阈值,但错误地将连续无线电波防爆安全点火功率阈值修改为发射器的有效输出功率与天线增益的乘积,从而造成连续无线电波防爆安全发射功率阈值降低;在传输衰减和接收灵敏度一定的条件下,降低了无线传输距离,不利于矿井无线通信系统和人员定位系统的推广应用。因此,国家标准GB/T 3836.1—2021和国际标准IEC 60079-0:2017规定的连续无线电波防爆安全功率阈值应为点火功率阈值,而不是发射器的有效输出功率与天线增益的乘积。

     

  • 图  1  爆炸性气体环境的潜在无线电波点火风险全面评估程序

    Figure  1.  Full assessment procedure for potential radio wave ignition hazards in explosive gas environment

    表  1  GB/T 3836.1—2021规定的连续无线电波防爆安全功率阈值

    Table  1.   Explosion-proof safety power threshold of continuous radio wave specified in GB/T 3836.1-2021

    设备类别连续无线电波防爆
    安全功率阈值/W
    热起燃时间
    (平均时间)/μs
    I6200
    IIA6100
    IIB3.580
    IIC220
    III6200
    下载: 导出CSV

    表  2  GB/T 3836.1—2021规定的脉冲式无线电波防爆安全能量阈值

    Table  2.   Explosion-proof safety energy threshold of pulsed radio wave specified in GB/T 3836.1-2021

    设备类别脉冲式无线电波防爆安全能量阈值/μJ
    I1 500
    IIA950
    IIB250
    IIC50
    III1 500
    下载: 导出CSV

    表  3  CLC/TR 50427:2004规定的不同爆炸性气体环境类别的代表性气体

    Table  3.   Representative gases of different explosive gas environment categories specified in CLC/TR 50427:2004

    环境类别代表性气体
    I甲烷
    IIA丙烷
    IIB乙烯
    IIC氢气
    下载: 导出CSV

    表  4  CLC/TR 50427:2004规定的连续无线电波防爆安全功率阈值

    Table  4.   Explosion-proof safety power threshold of continuous radio wave specified in CLC/TR 50427:2004

    环境类别连续无线电波防爆
    安全功率阈值/W
    热起燃时间
    (平均时间)/μs
    I6(对于细长结构,例如起重机);
    8(对于其他所有结构)
    200
    IIA6100
    IIB3.580
    IIC220
    下载: 导出CSV

    表  5  CLC/TR 50427:2004中规定的脉冲式无线电波防爆安全能量阈值

    Table  5.   Explosion-proof safety energy threshold of pulsed radio wave specified in CLC/TR 50427:2004

    环境类别脉冲式无线电波防爆安全能量阈值/μJ
    I1 500
    IIA950
    IIB250
    IIC50
    下载: 导出CSV
  • [1] 孙继平. 煤矿机器人电气安全技术研究[J]. 煤炭科学技术,2019,47(4):1-6.

    SUN Jiping. Research on electrical safety technology of coal mine robot[J]. Coal Science and Technology,2019,47(4):1-6.
    [2] EXCELL P S, BUTCHER G H, HOWSON D P. Towards a safety standard for radiofrequency hazards to flammable mixtures-progress and problems[C]. IEEE International Symposium on Electromagnetic Compatibility, San Diego, 1979: 1-5.
    [3] BURSTOW D J,LOVELAND R J,TOMLINSON R,et al. Radio frequency ignition hazards[J]. Radio and Electronic Engineer,1981,51(4):151-169. doi: 10.1049/ree.1981.0021
    [4] HOWSON D P,EXCELL P S,BUTCHER G H. Ignition of flammable gas/air mixtures by sparks from 2 MHz and 9 MHz sources[J]. Radio and Electronic Engineer,1981,51(4):170-174. doi: 10.1049/ree.1981.0022
    [5] MADDOCKS A J,JACKSON G A. Measurements of radio frequency voltage and power induced in structures on the St Fergus gas terminals[J]. Radio and Electronic Engineer,1981,51(4):187-194. doi: 10.1049/ree.1981.0024
    [6] ROBERTSON S S J,LOVELAND R J. Radio-frequency ignition hazards:a review[J]. Physical Science,Measurement and Instrumentation,Management and Education-Reviews,IEE Proceedings A,1981,128(9):607-614.
    [7] JAMES R A,EXCELL P S,KELLER A Z. Probabilistic factors in radio-frequency ignition and detonation hazards analyses[J]. Reliability Engineering,1987,17(2):139-153. doi: 10.1016/0143-8174(87)90012-6
    [8] EXCELL P S,JAMES R A,KELLER A Z. Strategic problems in the drafting and implementation of safety guides for the prevention of radio frequency radiation hazards[J]. International Journal of Quality & Reliability Management,1988,5(5):47-61.
    [9] 孙继平,江嬴. 矿井车辆无人驾驶关键技术研究[J]. 工矿自动化,2022,48(5):1-5,31.

    SUN Jiping,JIANG Ying. Research on key technologies of mine unmanned vehicle[J]. Journal of Mine Automation,2022,48(5):1-5,31.
    [10] 孙继平,徐卿. 矿井无线中继应急通信系统实现方法[J]. 工矿自动化,2021,47(5):1-8.

    SUN Jiping,XU Qing. Implementation method of mine wireless relay emergency communication system[J]. Industry and Mine Automation,2021,47(5):1-8.
    [11] 孙继平,张高敏. 矿井应急通信系统[J]. 工矿自动化,2019,45(8):1-5.

    SUN Jiping,ZHANG Gaomin. Mine emergency communication system[J]. Industry and Mine Automation,2019,45(8):1-5.
    [12] 孙继平. 煤矿智能化与矿用5G[J]. 工矿自动化,2020,46(8):1-7.

    SUN Jiping. Coal mine intelligence and mine-used 5G[J]. Industry and Mine Automation,2020,46(8):1-7.
    [13] 孙继平,张高敏. 矿用5G频段选择及天线优化设置研究[J]. 工矿自动化,2020,46(5):1-7.

    SUN Jiping,ZHANG Gaomin. Research on 5G frequency band selection and antenna optimization setting in coal mine[J]. Industry and Mine Automation,2020,46(5):1-7.
    [14] 孙继平,陈晖升. 智慧矿山与5G和WiFi6[J]. 工矿自动化,2019,45(10):1-4. doi: 10.13272/j.issn.1671-251x.17517

    SUN Jiping,CHEN Huisheng. Smart mine with 5G and WiFi6[J]. Industry and Mine Automation,2019,45(10):1-4. doi: 10.13272/j.issn.1671-251x.17517
    [15] 刘晓阳,马新彦,刘坤,等. 矿井5G电磁波辐射能量安全性研究[J]. 工矿自动化,2021,47(7):85-91.

    LIU Xiaoyang,MA Xinyan,LIU Kun,et al. Research on the safety of 5G electromagnetic wave radiation energy in coal mine[J]. Industry and Mine Automation,2021,47(7):85-91.
    [16] MENG Jijian. Research on wireless power transmission in coal mine based on explosion-proof safety[C]. IEEE 4th Advanced Information Management, Communicates, Electronic and Automation Control Conference, Chongqing, 2021: 1700-1704.
    [17] 郑小磊,梁宏. 煤矿5G通信系统安全技术要求和检验方法[J]. 工矿自动化,2021,47(3):9-13.

    ZHENG Xiaolei,LIANG Hong. Safety technical requirements and inspection methods of coal mine 5G communication system[J]. Industry and Mine Automation,2021,47(3):9-13.
    [18] 张勇. 煤矿井下无线射频近场谐振耦合防爆电磁能仿真分析[J]. 煤矿安全,2022,53(8):134-138.

    ZHANG Yong. Simulation analysis of explosion-proof electromagnetic energy coupled with radio frequency near field resonance in underground coal mine[J]. Safety in Coal Mines,2022,53(8):134-138.
    [19] 邵水才,郭旭东,彭铭,等. 煤矿井下无线传输分析方法[J]. 工矿自动化,2022,48(10):123-128.

    SHAO Shuicai,GUO Xudong,PENG Ming,et al. Coal mine underground wireless transmission analysis method[J]. Journal of Mine Automation,2022,48(10):123-128.
    [20] 丁序海,潘涛,彭铭,等. 煤矿井下无线电波对人体的影响[J]. 工矿自动化,2022,48(11):84-92,144.

    DING Xuhai,PAN Tao,PENG Ming,et al. Influence of underground radio wave on human body in coal mine[J]. Journal of Mine Automation,2022,48(11):84-92,144.
    [21] 梁伟锋,孙继平,彭铭,等. 煤矿井下无线电波防爆安全功率阈值研究[J]. 工矿自动化,2022,48(12):123-128,163.

    LIANG Weifeng,SUN Jiping,PENG Ming,et al. Research on safe power threshold of radio wave explosion-proof in coal mine[J]. Journal of Mine Automation,2022,48(12):123-128,163.
  • 加载中
图(1) / 表(5)
计量
  • 文章访问数:  1206
  • HTML全文浏览量:  134
  • PDF下载量:  79
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-11
  • 修回日期:  2023-01-26
  • 网络出版日期:  2023-02-27

目录

    /

    返回文章
    返回