矿井UWB定位系统中圆极化天线的优化设计和应用

鞠晨

鞠晨. 矿井UWB定位系统中圆极化天线的优化设计和应用[J]. 工矿自动化,2023,49(1):171-176. DOI: 10.13272/j.issn.1671-251x.18071
引用本文: 鞠晨. 矿井UWB定位系统中圆极化天线的优化设计和应用[J]. 工矿自动化,2023,49(1):171-176. DOI: 10.13272/j.issn.1671-251x.18071
JU Chen. Optimization design and application of circularly polarized antenna in mine UWB positioning system[J]. Journal of Mine Automation,2023,49(1):171-176. DOI: 10.13272/j.issn.1671-251x.18071
Citation: JU Chen. Optimization design and application of circularly polarized antenna in mine UWB positioning system[J]. Journal of Mine Automation,2023,49(1):171-176. DOI: 10.13272/j.issn.1671-251x.18071

矿井UWB定位系统中圆极化天线的优化设计和应用

基金项目: 国家重点研发计划项目(2017YFC0804303);国家能源集团科技创新项目(GJNY2030XDXM-19-06.1)。
详细信息
    作者简介:

    鞠晨(1988—),男,辽宁北票人,工程师,从事矿井精确定位方面的工作,E-mail:10036293@chnenergy.com.cn

  • 中图分类号: TD655.3

Optimization design and application of circularly polarized antenna in mine UWB positioning system

  • 摘要: 天线是矿井UWB定位系统的重要组成部分,为了抑制矿井UWB定位系统接收到多径反射信号,提高矿井UWB定位系统的定位精度,对传统圆极化天线结构进行优化,设计了一种新型右旋圆极化微带天线。先将矩形开槽改为十字开槽,改变电流轨迹,使两正交线性极化电场的相差更接近90°,从而降低轴比,使天线的圆极化纯度更高;再将十字开槽平滑扩展为菱形开槽,达到提高交叉极化电平、抑制正交旋向的效果,使天线实现更高的右旋圆极化纯度。采用HFSS软件对该新型右旋圆极化微带天线进行仿真,仿真结果表明,主辐射方向交叉极化电平>10.4 dBi,可以达到很好的右旋圆极化效果。新型右旋圆极化微带天线样品的工作频带和回波实测结果同仿真结果基本吻合,说明该新型天线结构易于加工且正常容差内的工艺偏差对天线性能的影响程度相对较小。将制作的新型右旋圆极化微带天线样品用于基于到达相位差的UWB定位系统,并在隧道环境下进行现场测试,测试结果表明,信号到达相位差稳定性有明显改善,对多径效应有明显的抑制效果,可以有效提高UWB定位系统的定位精度。该新型右旋圆极化微带天线具有体积小、质量轻、易于制作等优点。
    Abstract: The antenna is an important part of the mine UWB positioning system. In order to suppress the multipath reflection signal received by the mine UWB positioning system and improve the positioning precision of the mine UWB positioning system, the traditional circularly polarized antenna structure is optimized. This study designs a new type of right-handed circularly polarized microstrip antenna. Firstly, the rectangular slot is changed to the cross slot. The current trajectory is changed to make the difference between the two orthogonal linearly polarized electric fields closer to 90°. The axial ratio is reduced to make the circularly polarized purity of the antenna higher. Secondly, the cross slot is smoothly expanded into a diamond slot to improve the cross-polarization level and suppress the orthogonal rotation. Therefore, the antenna can achieve higher right-handed circularly polarized purity. The HFSS software is used to simulate the new right-handed circularly polarized microstrip antenna. The simulation results show that the cross-polarization level in the main radiation direction is more than 10.4 dBi, which can achieve good right-handed circularly polarized effect. The measured results of the operating frequency band and echo of the new right-handed circularly polarized microstrip antenna sample are basically consistent with the simulation results. The results indicate that the new antenna structure is easy to be processed and the influence of the process deviation within the normal tolerance on the antenna performance is relatively small. The new right-handed circularly polarized microstrip antenna sample is used for the field test of the UWB positioning system based on the arrival phase difference in the tunnel environment. The test results show that the stability of the arrival phase difference of the signal is significantly improved. The multipath effect is significantly suppressed, which can effectively improve the positioning precision of the UWB positioning system. The new right-handed circularly polarized microstrip antenna has the advantages of small size, light weight and easy fabrication.
  • 图  1   常用的圆极化微带天线构造方式

    Figure  1.   Construction mode of commonly used circularly polarized microstrip antenna

    图  2   传统右旋圆极化天线结构

    Figure  2.   Structure of conventional right-handed circularly polarized antenna

    图  3   传统右旋圆极化天线E面、H面轴比曲线

    Figure  3.   Axial ratio curves of E-plane and H-plane of conventional right-handed circularly polarized antenna

    图  4   传统右旋圆极化天线E面、H面交叉极化增益方向

    Figure  4.   Cross-polarization gain direction of E-plane and H-plane of conventional right-handed circularly polarized antenna

    图  5   天线演化过程

    Figure  5.   Antenna evolution process

    图  6   新型右旋圆极化微带天线结构

    Figure  6.   Structure of novel right-handed circularly polarized microstrip antenna

    图  7   新型右旋圆极化微带天线和传统右旋圆极化天线E面、H面轴比曲线

    Figure  7.   Axial ratio curves of E-plane and H-plane of novel right-handed circularly polarized microstrip antenna and conventional right-handed circularly polarized antenna

    图  8   新型右旋圆极化微带天线E面、H面交叉极化增益方向

    Figure  8.   Cross-polarization gain direction of E-plane and H-plane of novel right-handed circularly polarized microstrip antenna

    图  9   新型右旋圆极化微带天线辐射电场的极化旋转效果

    Figure  9.   Polarization rotation effect of radiated electric field of novel right-handed circularly polarized microstrip antenna

    图  10   新型右旋圆极化微带天线实物

    Figure  10.   Material object of novel right-handed circularly polarized microstrip antenna

    图  11   仿真和实测回波曲线对比

    Figure  11.   Comparison between simulated and measured echo curves

    图  12   隧道实地测试环境

    Figure  12.   Tunnel field test environment

    图  13   使用传统线极化天线和新型右旋圆极化微带天线时到达相位差对比曲线

    Figure  13.   Comparison curves of phase difference of arrival when using conventional linearly polarized antenna and novel right-handed circularly polarized microstrip antenna

    表  1   新型右旋圆极化微带天线参数

    Table  1   Parameters of novel right-handed circularly polarized microstrip antenna

    W/
    mm
    L/
    mm
    R/
    mm
    a/
    mm
    La/
    mm
    Lb/
    mm
    $ {\varepsilon _{\rm{r}}} $ h1/
    mm
    h2/
    mm
    t1/
    μm
    t2/
    μm
    t3/
    μm
    $ \omega $/
    mm
    32.7 40.6 9.3 3.4 11.2 6.44 4.2 1.58 0.4 26 16 26 0.7
    下载: 导出CSV
  • [1] 梁久祯. 无线定位系统[M]. 北京: 电子工业出版社, 2013.

    LIANG Jiuzhen. Wireless positioning system[M]. Beijing: Publishing House of Electronics Industry, 2013.

    [2] 孙继平,江嬴. 矿井车辆无人驾驶关键技术研究[J]. 工矿自动化,2022,48(5):1-5,31. DOI: 10.13272/j.issn.1671-251x.17947

    SUN Jiping,JIANG Ying. Research on key technologies of mine unmanned vehicle[J]. Journal of Mine Automation,2022,48(5):1-5,31. DOI: 10.13272/j.issn.1671-251x.17947

    [3] 孙继平,程加敏. 煤矿智能化信息综合承载网[J]. 工矿自动化,2022,48(3):1-4,90. DOI: 10.13272/j.issn.1671-251x.17905

    SUN Jiping,CHENG Jiamin. Coal mine intelligent information comprehensive carrier network[J]. Journal of Mine Automation,2022,48(3):1-4,90. DOI: 10.13272/j.issn.1671-251x.17905

    [4] 孙继平. 煤矿智能化与矿用5G和网络硬切片技术[J]. 工矿自动化,2021,47(8):1-6. DOI: 10.13272/j.issn.1671-251x.17821

    SUN Jiping. Coal mine intelligence,mine 5G and network hard slicing technology[J]. Industry and Mine Automation,2021,47(8):1-6. DOI: 10.13272/j.issn.1671-251x.17821

    [5] 孙继平. 煤矿智能化与矿用5G[J]. 工矿自动化,2020,46(8):1-7.

    SUN Jiping. Coal mine intelligence and mine-used 5G[J]. Industry and Mine Automation,2020,46(8):1-7.

    [6] 孙继平,钱晓红. 煤矿重特大事故应急救援技术及装备[J]. 煤炭科学技术,2017,45(1):112-116,153. DOI: 10.13199/j.cnki.cst.2017.01.019

    SUN Jiping,QIAN Xiaohong. Emergency rescue technology and equipment of mine extraordinary accidents[J]. Coal Science and Technology,2017,45(1):112-116,153. DOI: 10.13199/j.cnki.cst.2017.01.019

    [7] 饶育萍,牛忠霞,王映民. 超宽带(UWB)短脉冲天线性能改善方法研究[J]. 无线通信技术,2004,13(1):22-25. DOI: 10.3969/j.issn.1003-8329.2004.01.006

    RAO Yuping,NIU Zhongxia,WANG Yingmin. Improvements in characteristics of UWB antennas[J]. Wireless Communication Technology,2004,13(1):22-25. DOI: 10.3969/j.issn.1003-8329.2004.01.006

    [8] 高向军,王光明,朱莉,等. 宽带圆极化微带天线的设计[J]. 天线与伺服技术,2007,33(1):34-36.

    GAO Xiangjun,WANG Guangming,ZHU Li,et al. The design on broadband circular polarization microstrip antenna[J]. Radio Communications Technology,2007,33(1):34-36.

    [9] 郭继坤,赵春刚,张宏炜. 矿井下UWB天线的研究[J]. 煤矿机械,2009,30(8):62-63. DOI: 10.3969/j.issn.1003-0794.2009.08.027

    GUO Jikun,ZHAO Chungang,ZHANG Hongwei. Research on UWB of mine tunnels[J]. Coal Mine Machinery,2009,30(8):62-63. DOI: 10.3969/j.issn.1003-0794.2009.08.027

    [10] 薛睿峰,钟顺时. 表面开槽的有机磁性圆极化微带天线[J]. 上海大学学报(自然科学版),2002,8(3):189-192. DOI: 10.3969/j.issn.1007-2861.2002.03.001

    XUE Ruifeng,ZHONG Shunshi. Slotted circularly polarized microstrip antenna using organic magnetic substrate[J]. Journal of Shanghai University(Natural Science Edition),2002,8(3):189-192. DOI: 10.3969/j.issn.1007-2861.2002.03.001

    [11] 尹应增,张卫东,郑会利,等. 正多边形贴片圆极化微带天线[J]. 西安电子科技大学学报(自然科学版),2000,27(2):259-261. DOI: 10.3969/j.issn.1001-2400.2000.02.029

    YIN Yingzeng,ZHANG Weidong,ZHENG Huili,et al. A circular polarization microstrip antenna with the shape of polygonal[J]. Journal of Xidian University(Natural Science),2000,27(2):259-261. DOI: 10.3969/j.issn.1001-2400.2000.02.029

    [12] 李强,鄢泽洪,张小苗. 一种新的小型圆极化微带天线[J]. 空间电子技术,2005(4):52-56.

    LI Qiang,YAN Zehong,ZHANG Xiaomiao. A novel compact circularly polarized microstrip antenna[J]. Space Electronic Technology,2005(4):52-56.

    [13] 杨帅,冯全源. 缝隙加载的宽频带圆极化微带天线[J]. 探测与控制学报,2009,31(5):77-80. DOI: 10.3969/j.issn.1008-1194.2009.05.018

    YANG Shuai,FENG Quanyuan. Slot-loaded circularly polarized broadband microstrip antenna[J]. Journal of Detection & Control,2009,31(5):77-80. DOI: 10.3969/j.issn.1008-1194.2009.05.018

    [14] 李明洋, 刘敏, 杨放. HFSS天线设计[M]. 北京: 电子工业出版社, 2011.

    LI Mingyang, LIU Min, YANG Fang. HFSS antenna design[M]. Beijing: Publishing House of Electronics Industry, 2011.

    [15] 于家傲,陈文君,袁靖,等. 单馈圆极化微带天线的工程调试方法研究[J]. 空军预警学院学报,2014,28(1):30-32,36.

    YU Jia'ao,CHEN Wenjun,YUAN Jing,et al. Engineering debug method of single-feeding circularly polarized micro-strip antenna[J]. Journal of Air Force Early Warning Academy,2014,28(1):30-32,36.

    [16]

    DOTLIC I, CONNELL A, MA Hang, et al. Angle of arrival estimation using decawave DW1000 integrated circuits[C]. 14th Workshop on Positioning, Navigation and Communications, Bremen, 2017.DOI: 10.1109/WPNC.2017.8250079.

  • 期刊类型引用(12)

    1. 惠阿丽,秦祺,李瑞,荣相. 矿用高压断路器故障诊断技术研究现状及展望. 煤矿安全. 2025(01): 228-236 . 百度学术
    2. 华贤兵,蔡美玲. 煤矿机电装备远程监控系统的设计与实现方法. 煤矿机械. 2024(04): 208-210 . 百度学术
    3. 陈晓雷,高志坚,曲钰,邱一川,胡陈晨,杨德格. 基于物联网技术的配电设备运行状态实时监测研究. 自动化与仪器仪表. 2024(07): 365-368 . 百度学术
    4. 曹现刚,马晨飞,王云飞,段雍,霍小泉. 煤矿设备状态大数据平台架构及关键技术研究. 煤炭技术. 2023(01): 222-224 . 百度学术
    5. 吕猛. 基于无线传感技术的煤矿机械设备运行状态监测系统. 能源与环保. 2023(03): 227-232 . 百度学术
    6. 汪杰,李晓华,郑功勋,王春华,余文波. 基于云平台的煤矿智能运维服务系统研究. 煤矿机械. 2023(08): 191-194 . 百度学术
    7. 薛霜思,曹晖,贾立新,李欢,谭浚楷,石天卓. 矿用电机分布式远程智能在线监测系统设计. 煤炭学报. 2023(S1): 368-380 . 百度学术
    8. 陶睿,孙菁烩. 基于物联网技术的电气自动化二次设备远程监测系统的设计. 自动化应用. 2023(21): 197-199+202 . 百度学术
    9. 董媛蓉. 基于多源异构数据的高速机电设备运行监测系统设计. 今日制造与升级. 2023(11): 78-80+84 . 百度学术
    10. 李红岩,杨朝旭,荣相,史晗,王越,刘宝,王磊. 矿用逆变器功率器件故障预测与健康管理技术现状及展望. 工矿自动化. 2022(05): 15-20 . 本站查看
    11. 侯瑞丽. 基于EMMD-RVM的煤矿采矿机械设备异常检测系统. 能源与环保. 2022(05): 149-155 . 百度学术
    12. 杜国强. 矿井机电设备的故障原因与维修对策. 内蒙古石油化工. 2022(10): 51-54+58 . 百度学术

    其他类型引用(4)

图(13)  /  表(1)
计量
  • 文章访问数:  230
  • HTML全文浏览量:  165
  • PDF下载量:  38
  • 被引次数: 16
出版历程
  • 收稿日期:  2022-12-20
  • 修回日期:  2023-01-10
  • 网络出版日期:  2023-01-16
  • 刊出日期:  2023-02-01

目录

    /

    返回文章
    返回