留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于小波包能量的煤矿瓦斯和煤尘爆炸声音识别方法

余星辰 王云泉

余星辰,王云泉. 基于小波包能量的煤矿瓦斯和煤尘爆炸声音识别方法[J]. 工矿自动化,2023,49(1):131-139.  doi: 10.13272/j.issn.1671-251x.18070
引用本文: 余星辰,王云泉. 基于小波包能量的煤矿瓦斯和煤尘爆炸声音识别方法[J]. 工矿自动化,2023,49(1):131-139.  doi: 10.13272/j.issn.1671-251x.18070
YU Xingchen, WANG Yunquan. Coal mine gas and coal dust explosion sound recognition method based on wavelet packet energy[J]. Journal of Mine Automation,2023,49(1):131-139.  doi: 10.13272/j.issn.1671-251x.18070
Citation: YU Xingchen, WANG Yunquan. Coal mine gas and coal dust explosion sound recognition method based on wavelet packet energy[J]. Journal of Mine Automation,2023,49(1):131-139.  doi: 10.13272/j.issn.1671-251x.18070

基于小波包能量的煤矿瓦斯和煤尘爆炸声音识别方法

doi: 10.13272/j.issn.1671-251x.18070
基金项目: 国家重点研发计划项目(2016YFC0801800)。
详细信息
    作者简介:

    余星辰(1988—),男,江苏涟水人,博士研究生,主要研究方向为矿井监控与灾害报警,E-mail:yu178844264@126.com

  • 中图分类号: TD76

Coal mine gas and coal dust explosion sound recognition method based on wavelet packet energy

  • 摘要: 针对目前煤矿瓦斯和煤尘爆炸监测漏报率和误报率高,难以满足瓦斯和煤尘爆炸事故应急救援需求的问题,提出了一种基于小波包能量的煤矿瓦斯和煤尘爆炸声音识别方法。在煤矿井下重点监测区域安装矿用拾音器,实时采集煤矿井下设备工作声音及环境音等;通过小波包分解提取声音的小波包能量占比,构成表征声音信号的特征向量;将特征向量输入BP神经网络中,训练得到煤矿瓦斯和煤尘爆炸声音识别模型;提取待测声音信号的小波包能量占比,并构成特征向量输入模型中,识别待测声音信号的类型。根据特征向量和输出结果要求,建立了输入层、隐含层和输出层节点数分别为8,8,1的BP神经网络用于识别模型的训练;通过分析煤矿井下声音信号小波包分解结果,确立了采用Haar小波函数,选择小波包分解层数为3。实验结果表明:瓦斯和煤尘爆炸声音通过小波包分解后的能量占比与其他声音差异明显,且不同时长的同一声音信号的小波包能量占比分布稳定,因此小波包能量占比可有效表征声音信号特征,且具有较强的鲁棒性;BP神经网络训练速度快,仅需较少的训练迭代次数就能达到期望误差,且在煤矿井下众多干扰声音信号存在的情况下识别准确率达95%,与极限学习机模型、支持向量机模型相比,BP神经网络识别效果最优。

     

  • 图  1  基于小波包能量的煤矿瓦斯和煤尘爆炸声音识别方法原理

    Figure  1.  Principle of coal mine gas and coal dust explosion sound recognition method based on wavelet packet energy

    图  2  经小波包分解的声音高频分量小波包能量占比差值分布

    Figure  2.  Distribution of wavelet packet energy proportion difference of high frequency sound component decomposed by wavelet packet

    图  3  基于Haar小波函数的声音信号小波包分解结果及小波包系数分布

    Figure  3.  Wavelet packet decomposition results and wavelet packet coefficient distribution of sound signals based on Haar wavelet function

    图  4  基于db4小波函数的声音信号小波包分解结果及小波包系数分布

    Figure  4.  Wavelet packet decomposition results and wavelet packet coefficient distribution of sound signals based on db4 wavelet function

    图  5  不同时长下声音小波包能量占比分布

    Figure  5.  Wavelet packet energy proportion distribution of sound under different time

    图  6  BP神经网络训练误差曲线

    Figure  6.  BP neural network training error curve

    表  1  煤矿井下声音小波包能量占比分布

    Table  1.   Wavelet packet energy proportion distribution of sound in underground coal mine %

    声音 能量占比
    d1 d2 d3 d4 d5 d6 d7 d8
    瓦斯爆炸 87.280 8.081 1.013 2.581 0.230 0.539 0.048 0.228
    煤尘爆炸 90.100 6.316 0.810 1.969 0.185 0.411 0.037 0.173
    采煤机 99.798 0.151 0.036 0.004 0.009 0.001 0 0
    刮板输送机 96.802 2.366 0.548 0.110 0.134 0.025 0.008 0.006
    转载机 94.162 4.021 0.836 0.567 0.198 0.119 0.037 0.060
    破碎机 97.182 1.961 0.403 0.260 0.096 0.053 0.016 0.029
    乳化液泵 95.135 3.106 0.690 0.602 0.162 0.131 0.080 0.093
    掘进机 94.002 3.944 0.792 0.749 0.181 0.149 0.077 0.105
    锚杆机 57.115 9.755 8.843 7.940 2.054 2.898 7.320 4.075
    风镐 37.388 21.513 10.640 13.989 1.537 3.236 6.919 4.778
    馈电开关设备 99.801 0.140 0.036 0.007 0.009 0.003 0.003 0.002
    高爆开关设备 98.624 1.029 0.251 0.022 0.062 0.006 0.003 0.002
    移动变电站 99.199 0.604 0.147 0.009 0.037 0.002 0.001 0.001
    通风机 85.903 9.983 2.096 1.112 0.507 0.237 0.055 0.108
    水泵 91.574 5.867 1.235 0.733 0.287 0.152 0.069 0.083
    胶带 90.865 6.463 1.290 0.780 0.310 0.165 0.046 0.079
    胶轮车 98.605 1.053 0.255 0.017 0.063 0.004 0.001 0
    下载: 导出CSV

    表  2  不同模型识别结果

    Table  2.   Recognition results of different models %

    模型 识别率 召回率 精确率
    BP神经网络模型 95 75 100
    SVM模型 91 69 100
    ELM模型 84 20 100
    下载: 导出CSV
  • [1] 孙继平. 煤矿瓦斯和煤尘爆炸感知报警与爆源判定方法研究[J]. 工矿自动化,2020,46(6):1-5,11. doi: 10.13272/j.issn.1671-251x.17617

    SUN Jiping. Research on method of coal mine gas and coal dust explosion perception alarm and explosion source judgment[J]. Industry and Mine Automation,2020,46(6):1-5,11. doi: 10.13272/j.issn.1671-251x.17617
    [2] 孙继平,余星辰. 基于声音识别的煤矿重特大事故报警方法研究[J]. 工矿自动化,2021,47(2):1-5,44. doi: 10.13272/j.issn.1671-251x.17715

    SUN Jiping,YU Xingchen. Research on alarm method of coal mine extraordinary accidents based on sound recognition[J]. Industry and Mine Automation,2021,47(2):1-5,44. doi: 10.13272/j.issn.1671-251x.17715
    [3] 孙继平,余星辰. 基于CEEMD分量样本熵与SVM分类的煤矿瓦斯和煤尘爆炸声音识别方法[J]. 采矿与安全工程学报,2022,39(5):1061-1070. doi: 10.13545/j.cnki.jmse.2022.0073

    SUN Jiping,YU Xingchen. Sound recognition method of coal mine gas and coal dust explosion based on CEEMD component sample entropy and SVM classification[J]. Journal of Mining & Safety Engineering,2022,39(5):1061-1070. doi: 10.13545/j.cnki.jmse.2022.0073
    [4] 孙继平,余星辰. 基于声音特征的煤矿瓦斯和煤尘爆炸识别方法[J]. 中国矿业大学学报,2022,51(6):1096-1105. doi: 10.13247/j.cnki.jcumt.001451

    SUN Jiping,YU Xingchen. Recognition method of coal mine gas and coal dust explosion based on sound characteristics[J]. Journal of China University of Mining & Technology,2022,51(6):1096-1105. doi: 10.13247/j.cnki.jcumt.001451
    [5] 彭佑多,谢伟华,郭迎福,等. 矿井掘进工作面粉尘对机器噪声衰减的影响[J]. 湖南科技大学学报(自然科学版),2012,27(1):23-29. doi: 10.3969/j.issn.1672-9102.2012.01.005

    PENG Youduo,XIE Weihua,GUO Yingfu,et al. Studies on the spread and attenuation of machine noise influenced by the heading face of mine roadway dust[J]. Journal of Hunan University of Science and Technology(Natural Science Edition),2012,27(1):23-29. doi: 10.3969/j.issn.1672-9102.2012.01.005
    [6] 李端玲,成苈委,于功敬,等. 融合小波包和神经网络的脑电信号处理方法[J]. 北京邮电大学学报,2021,44(3):94-99.

    LI Duanling,CHENG Liwei,YU Gongjing,et al. An electroencephalogram signal processing method fusing wavelet packet and neural network[J]. Journal of Beijing University of Posts and Telecommunications,2021,44(3):94-99.
    [7] 李浩,毋文峰,蒲云,等. 基于小波包能量谱的装备悬臂梁结构损伤诊断[J]. 火力与指挥控制,2021,46(1):177-181. doi: 10.3969/j.issn.1002-0640.2021.01.031

    LI Hao,WU Wenfeng,PU Yun,et al. Cantilever beam structure damage diagnosis based on weaponry wavelet packet energy spectrum[J]. Fire Control & Command Control,2021,46(1):177-181. doi: 10.3969/j.issn.1002-0640.2021.01.031
    [8] 郭健,钟昊荪. 基于实测数据的斜拉索振动分析与小波包能量占比研究[J]. 桥梁建设,2021,51(3):25-31. doi: 10.3969/j.issn.1003-4722.2021.03.004

    GUO Jian,ZHONG Haosun. Vibration analysis and wavelet packet energy ratio of stay cable based on measured data[J]. Bridge Construction,2021,51(3):25-31. doi: 10.3969/j.issn.1003-4722.2021.03.004
    [9] 王伟,李兴华,陈作彬,等. 基于小波包变换的爆破振动信号能量熵特征分析[J]. 爆破器材,2019,48(6):19-23. doi: 10.3969/j.issn.1001-8352.2019.06.004

    WANG Wei,LI Xinghua,CHEN Zuobin,et al. Characteristic analysis of energy entropy of blasting vibration signal based on wavelet packet transform[J]. Explosive Materials,2019,48(6):19-23. doi: 10.3969/j.issn.1001-8352.2019.06.004
    [10] 梁凯,韩庆邦. 小波包能量谱和BP神经网络在波纹管压浆超声检测中的应用[J]. 声学技术,2020,39(2):151-156.

    LIANG Kai,HAN Qingbang. Application of wavelet packet energy spectrum and BP neural network to ultrasonic detection of slurry in bellows[J]. Technical Acoustics,2020,39(2):151-156.
    [11] 郭飞,张培伟,张大海,等. 基于小波包能量特征向量的光纤布拉格光栅低速冲击定位[J]. 振动与冲击,2017,36(8):184-189. doi: 10.13465/j.cnki.jvs.2017.08.029

    GUO Fei,ZHANG Peiwei,ZHANG Dahai,et al. Localization of low-velocity impact by using fiber Bragg grating sensors based on wavelet packet energy eigenvector[J]. Journal of Vibration and Shock,2017,36(8):184-189. doi: 10.13465/j.cnki.jvs.2017.08.029
    [12] 陈石,张兴敢. 基于小波包能量熵和随机森林的级联H桥多电平逆变器故障诊断[J]. 南京大学学报(自然科学),2020,56(2):284-289.

    CHEN Shi,ZHANG Xinggan. Fault diagnosis for cascaded H-bridge multilevel inverter based on wavelet packet energy entropy and random forest[J]. Journal of Nanjing University(Natural Science),2020,56(2):284-289.
    [13] 安春兰,甘方成,罗微,等. 提速道岔小波包能量熵故障诊断方法[J]. 铁道科学与工程学报,2015,12(2):269-274. doi: 10.3969/j.issn.1672-7029.2015.02.008

    AN Chunlan,GAN Fangcheng,LUO Wei,et al. Method of speed-up turnout fault diagnosis using wavelet packet energy entropy[J]. Journal of Railway Science and Engineering,2015,12(2):269-274. doi: 10.3969/j.issn.1672-7029.2015.02.008
    [14] 陈琳,陈静,王惠民,等. 基于小波包能量熵的电池剩余寿命预测[J]. 电工技术学报,2020,35(8):1827-1835. doi: 10.19595/j.cnki.1000-6753.tces.190094

    CHEN Lin,CHEN Jing,WANG Huimin,et al. Prediction of battery remaining useful life based on wavelet packet energy entropy[J]. Transactions of China Electrotechnical Society,2020,35(8):1827-1835. doi: 10.19595/j.cnki.1000-6753.tces.190094
    [15] 肖佳辰,卢超,林俊明,等. 基于小波包能量比变化率偏差的复合材料层板空气耦合超声概率损伤成像[J]. 复合材料学报,2021,38(8):2635-2645.

    XIAO Jiachen,LU Chao,LIN Junming,et al. Air coupled ultrasonic probabilistic damage imaging of composite laminates based on wavelet packet energy relative variation deviation[J]. Acta Materiae Compositae Sinica,2021,38(8):2635-2645.
    [16] 李伟,黄焱. 基于峰度检验和小波包分解的海洋平台脉冲噪声处理方法研究[J]. 振动与冲击,2021,40(6):220-226,242. doi: 10.13465/j.cnki.jvs.2021.06.029

    LI Wei,HUANG Yan. Impulse noise processing for an offshore platform based on kurtosis detection and wavelet packet decomposition[J]. Journal of Vibration and Shock,2021,40(6):220-226,242. doi: 10.13465/j.cnki.jvs.2021.06.029
    [17] 杨婷婷,李岩,林雪琦. 基于车辆制动激励和小波包能量分析的连续梁桥基础冲刷识别方法[J]. 中国公路学报,2021,34(4):51-60. doi: 10.3969/j.issn.1001-7372.2021.04.004

    YANG Tingting,LI Yan,LIN Xueqi. Foundation scour identification method based on vehicle braking excitation and wavelet packet energy analysis for continuous beam bridges[J]. China Journal of Highway and Transport,2021,34(4):51-60. doi: 10.3969/j.issn.1001-7372.2021.04.004
    [18] 齐添添,陈尧,何才厚,等. 损伤声发射信号小波包神经网络特征识别方法[J]. 北京邮电大学学报,2021,44(1):124-130. doi: 10.13190/j.jbupt.2020-118

    QI Tiantian,CHEN Yao,HE Caihou,et al. A wavelet packet neural network feature recognition method for damage acoustic emission signals[J]. Journal of Beijing University of Posts and Telecommunications,2021,44(1):124-130. doi: 10.13190/j.jbupt.2020-118
    [19] LIU Yanbing,DHAKAL S,HAO Binyao,et al. Coal and rock interface identification based on wavelet packet decomposition and fuzzy neural network[J]. Journal of Intelligent & Fuzzy Systems,2020,38(4):3949-3959.
    [20] HE Qingbo. Vibration signal classification by wavelet packet energy flow manifold learning[J]. Journal of Sound and Vibration,2013,332(7):1881-1894. doi: 10.1016/j.jsv.2012.11.006
    [21] 闫晓玲,董世运,徐滨士. 基于最优小波包Shannon熵的再制造电机转子缺陷诊断技术[J]. 机械工程学报,2016,52(4):7-12. doi: 10.3901/JME.2016.04.007

    YAN Xiaoling,DONG Shiyun,XU Binshi. Flaw diagnosis technology for remanufactured motor rotor based on optimal wavelet packet Shannon entropy[J]. Journal of Mechanical Engineering,2016,52(4):7-12. doi: 10.3901/JME.2016.04.007
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  749
  • HTML全文浏览量:  56
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-20
  • 修回日期:  2023-01-05
  • 网络出版日期:  2023-01-17

目录

    /

    返回文章
    返回