Study on dynamic response characteristics of resistivity in mining failure process of working face
-
摘要: 矿井电阻率法在采煤工作面水害隐患监测中发挥着重要作用,但工作面采动破坏过程的异常响应会对底板水害隐患的识别形成较大干扰。为了提高矿井电阻率法对采煤工作面底板水害隐患监测的解释精度,同步考虑覆岩破坏和底板破坏的影响,建立工作面采动破坏过程动态地电模型,通过矿井电阻率法三维数值模拟和反演成像,分别进行顶板监测和底板监测,分析采动破坏过程的电阻率动态响应特征,识别和提取底板水害隐患的电阻率响应特征。分析结果表明:采动破坏过程形成的电阻率异常区随回采工作面推进向前移动,在超前支撑压力的作用范围内会出现相对低阻异常,在采空区范围内会出现相对高阻异常;工作面固定位置的电阻率响应在回采过程中会经历先降低、后升高、再降低的过程,该过程与工作面回采过程中顶底板经历的周期性应力变化和破坏过程基本一致;底板水害隐患的低阻异常响应强度与其相对回采工作面的位置有关,当底板水害隐患的展布范围与采空区范围有所重合时,采空区的高阻异常响应会削弱底板水害隐患的低阻异常响应;当底板水害隐患的展布范围与超前支撑压力影响区范围有所重合时,二者的低阻异常响应会叠加在一起,使低阻异常响应得到一定幅度的增强;针对底板水害隐患进行纯异常提取后,可以消除采动破坏过程的影响,不同位置的底板水害隐患其纯异常响应强度基本一致,其垂向影响范围均大于采动破坏的垂向影响范围。Abstract: The mine resistivity method plays an important role in monitoring hidden danger of water hazards in coal working face. However, the abnormal response of mining failure process of coal working face will interfere with the identification of hidden danger of floor water hazards. In order to improve the interpretation precision of the mine resistivity method for monitoring hidden danger of floor water hazard in coal working face, simultaneously considering the influence of overburden failure and floor failure, a dynamic geoelectric model of the mining failure process in coal working face is established. The roof monitoring and floor monitoring are respectively carried out through three-dimensional numerical simulation and inversion imaging of mine resistivity method. The dynamic response characteristics of resistivity in the mining failure process are analyzed. The resistivity response characteristics of floor water hazard are identified and extracted. The analysis results show that the resistivity anomaly area formed in the process of mining failure moves forward with the advancing of the working face. There will be relatively low resistivity anomaly in the action range of the advance support pressure, and relatively high resistivity anomaly in the goaf area. The resistivity response at the fixed position of the working face will experience a process of first decreasing, then increasing, and then decreasing in the mining process. This process is basically consistent with the periodic stress change and failure process of the roof and floor in the mining process of the working face. The low resistance abnormal response intensity of floor water hazard is related to its position relative to the working face. When the distribution range of floor water hazard overlaps with that of goaf, the high resistance abnormal response of goaf will weaken the low resistance abnormal response of floor water hazard. When the distribution range of floor water hazard danger overlaps with the area affected by the advance support pressure, the low resistance abnormal response of the two will be superimposed together. The low resistance abnormal response can be enhanced to a certain extent. The influence of the mining damage process can be eliminated after the pure anomaly extraction of the hidden danger of floor water hazard. The pure abnormal response intensity of floor water hazards at different positions is basically the same, and their vertical influence scope is larger than that of mining damage.
-
表 1 工作面地电模型参数
Table 1. Geo-electric model parameters of working face
模型编号 回采进
度/m回采
阶段充水异常 破坏分区 走向范
围/m倾向范
围/m垂向范
围/m电阻率/(Ω·m) 1 0 回采前 无 切眼 0~6 0~100 0~5 20 000 2 10 初次来压前 无 垮落带离层区 0~10 0~100 0~7 6 000 卸压膨胀区 0~10 0~100 −5~0 1 500 采煤工作区 10~16 0~100 0~5 20 000 过渡区 10~16 0~100 −5~0 450 煤壁支撑区 16~40 0~100 0~5 700 超前压缩区 16~40 0~100 −10~0 350 3 30 初次来压后 无 断裂带离层区 0~30 0~100 7~20 600 垮落带离层区 0~30 0~100 0~7 6 000 卸压膨胀区 0~30 0~100 −10~0 1 500 采煤工作区 30~36 0~100 0~5 20 000 过渡区 30~36 0~100 −5~0 450 煤壁支撑区 36~60 0~100 0~5 700 超前压缩区 36~60 0~100 −10~0 350 4 60 周期来压 无 断裂带重新压实区 0~30 0~100 7~20 300 垮落带重新压实区 0~30 0~100 0~7 3 000 底板破坏带重新压实区 0~30 0~100 −16~0 750 断裂带离层区 30~60 0~100 7~20 600 垮落带离层区 30~60 0~100 0~7 6 000 卸压膨胀区 30~60 0~100 −10~0 1 500 采煤工作区 60~66 0~100 0~5 20 000 过渡区 60~66 0~100 −5~0 450 煤壁支撑区 66~90 0~100 0~5 700 超前压缩区 66~90 0~100 −10~0 350 5 60 周期来压 有 破坏分区与模型4一致 − − − − 充水异常区 10~50 30~70 −10~−50 20 6 60 周期来压 有 破坏分区与模型4一致 − − − − 充水异常区 40~80 30~70 −10~−50 20 7 60 周期来压 有 破坏分区与模型4一致 − − − − 充水异常区 80~120 30~70 −10~−50 20 8 60 周期来压 有 破坏分区与模型4一致 − − − − 充水异常区 120~160 30~70 −10~−50 20 -
[1] 张培森,朱慧聪,李复兴,等. 2008—2019年我国煤矿水害事故统计及演变趋势分析[J]. 煤矿安全,2021,52(8):194-200,207.ZHANG Peisen,ZHU Huicong,LI Fuxing,et al. Evolution trend and statistical analysis of coal mine water disaster accidents in China from 2008 to 2019[J]. Safety in Coal Mines,2021,52(8):194-200,207. [2] 王国法. 煤矿智能化最新技术进展与问题探讨[J]. 煤炭科学技术,2022,50(1):1-27. doi: 10.3969/j.issn.0253-2336.2022.1.mtkxjs202201001WANG Guofa. New technological progress of coal mine intelligence and its problems[J]. Coal Science and Technology,2022,50(1):1-27. doi: 10.3969/j.issn.0253-2336.2022.1.mtkxjs202201001 [3] 董书宁,刘再斌,程建远,等. 煤炭智能开采地质保障技术及展望[J]. 煤田地质与勘探,2021,49(1):21-31. doi: 10.3969/j.issn.1001-1986.2021.01.003DONG Shuning,LIU Zaibin,CHENG Jianyuan,et al. Technologies and prospect of geological guarantee for intelligent coal mining[J]. Coal Geology & Exploration,2021,49(1):21-31. doi: 10.3969/j.issn.1001-1986.2021.01.003 [4] 靳德武,乔伟,李鹏,等. 煤矿防治水智能化技术与装备研究现状及展望[J]. 煤炭科学技术,2019,47(3):10-17.JIN Dewu,QIAO Wei,LI Peng,et al. Research status and prospects on intelligent technology and equipment for mine water hazard prevention and control[J]. Coal Science and Technology,2019,47(3):10-17. [5] 吴泱序, 陈平, 李波. 基于3D双流网络的地下岩层破裂微震震源定位[J/OL]. 煤炭科学技术: 1-9[2022-10-03]. DOI: 10.13199/j.cnki.cst.2022-0395.WU Yangxu, CHEN Ping, LI Bo. Location of underground microseismic source based on 3D two-stream network[J/OL]. Coal Science and Technology: 1-9[2022-10-03]. DOI: 10.13199/j.cnki.cst.2022-0395. [6] 鲁晶津,王冰纯,李德山,等. 矿井电阻率法监测系统在采煤工作面水害防治中的应用[J]. 煤田地质与勘探,2022,50(1):36-44.LU Jingjin,WANG Bingchun,LI Deshan,et al. Application of mine-used resistivity monitoring system in working face water disaster control[J]. Coal Geology & Exploration,2022,50(1):36-44. [7] 孙斌杨,张平松. 基于DFOS的采场围岩变形破坏监测研究进展与展望[J]. 工程地质学报,2021,29(4):985-1001.SUN Binyang,ZHANG Pingsong. Research progress and prospect of surrounding rock deformation and failure monitoring in stope based on DFOS[J]. Journal of Engineering Geology,2021,29(4):985-1001. [8] 鲁晶津,王冰纯,颜羽. 矿井电法在煤层采动破坏和水害监测中的应用进展[J]. 煤炭科学技术,2019,47(3):18-26.LU Jingjin,WANG Bingchun,YAN Yu. Advances of mine electrical resistivity method applied in coal seam mining destruction and water inrush monitoring[J]. Coal Science and Technology,2019,47(3):18-26. [9] 于师建,程久龙,王玉和. 覆岩破坏视电阻率变化特征研究[J]. 煤炭学报,1999,24(5):457-460.YU Shijian,CHENG Jiulong,WANG Yuhe. The study on apparent resistivity change feature of overlying strata[J]. Journal of China Coal Society,1999,24(5):457-460. [10] 程久龙,于师建. 覆岩变形破坏电阻率响应特征的模拟实验研究[J]. 地球物理学报,2000,43(5):699-706. doi: 10.3321/j.issn:0001-5733.2000.05.014CHENG Jiulong,YU Shijian. Simulation experiment on the response of resistivity to deformation and failure of overburden[J]. Chinese Journal of Geophysics,2000,43(5):699-706. doi: 10.3321/j.issn:0001-5733.2000.05.014 [11] 程久龙. 矿山采动裂隙岩体地球物理场特征研究及工程应用[J]. 中国矿业大学学报,2008,37(6):877-879.CHENG Jiulong. Study on geophysical field characteristics of mining-induced fracture rock mass in mine and its applications[J]. Journal of China University of Mining & Technology,2008,37(6):877-879. [12] 张平松,刘盛东,吴荣新,等. 采煤面覆岩变形与破坏立体电法动态测试[J]. 岩石力学与工程学报,2009,28(9):1870-1875.ZHANG Pingsong,LIU Shengdong,WU Rongxin,et al. Dynamic detection of overburden deformation and failure in mining workface by 3D resistivity method[J]. Chinese Journal of Rock Mechanics and Engineering,2009,28(9):1870-1875. [13] 张平松,胡雄武,刘盛东. 采煤面覆岩破坏动态测试模拟研究[J]. 岩石力学与工程学报,2011,30(1):78-83.ZHANG Pingsong,HU Xiongwu,LIU Shengdong. Study of dynamic detection simulation of overburden failure in model workface[J]. Chinese Journal of Rock Mechanics and Engineering,2011,30(1):78-83. [14] 张平松,胡雄武,吴荣新. 岩层变形与破坏电法测试系统研究[J]. 岩土力学,2012,33(3):952-956.ZHANG Pingsong,HU Xiongwu,WU Rongxin. Study of detection system of distortion and collapsing of top rock by resistivity method in working face[J]. Rock and Soil Mechanics,2012,33(3):952-956. [15] 王莹,梁德贤,翟培合. 采动影响下煤层覆岩电性变化规律研究[J]. 煤炭科学技术,2015,43(5):122-125,105.WANG Ying,LIANG Dexian,ZHAI Peihe. Study on electrical property variation law of overburden strata above seam under mining influences[J]. Coal Science and Technology,2015,43(5):122-125,105. [16] 吴荣新,张卫,张平松. 并行电法监测工作面“垮落带”岩层动态变化[J]. 煤炭学报,2012,37(4):571-577.WU Rongxin,ZHANG Wei,ZHANG Pingsong. Exploration of parallel electrical technology for the dynamic variation of caving zone strata in coal face[J]. Journal of China Coal Society,2012,37(4):571-577. [17] 吴荣新,吴茂林,曹建富,等. 厚松散层薄基岩坚硬顶板工作面覆岩破坏电法监测[J]. 煤炭科学技术,2020,48(1):239-245.WU Rongxin,WU Maolin,CAO Jianfu,et al. Electrical monitoring of overburden failure in hard roof working face with thick loose layer and thin bedrock[J]. Coal Science and Technology,2020,48(1):239-245. [18] 刘树才,刘鑫明,姜志海,等. 煤层底板导水裂隙演化规律的电法探测研究[J]. 岩石力学与工程学报,2009,28(2):348-356.LIU Shucai,LIU Xinming,JIANG Zhihai,et al. Research on electrical prediction for evaluating water conducting fracture zones in coal seam floor[J]. Chinese Journal of Rock Mechanics and Engineering,2009,28(2):348-356. [19] 张朋,王一,刘盛东,等. 工作面底板变形与破坏电阻率特征[J]. 煤田地质与勘探,2011,39(1):64-67.ZHANG Peng,WANG Yi,LIU Shengdong,et al. Resistivity characteristic of deformation and failure of floor in workface[J]. Coal Geology & Exploration,2011,39(1):64-67. [20] 孙希奎,许进鹏,杨圣伦,等. 电阻率法动态监测煤层底板破坏变形规律研究[J]. 煤炭科学技术,2013,41(1):113-115,59.SUN Xikui,XU Jinpeng,YANG Shenglun,et al. Study on electric resistivity method applied to dynamically monitor and measure failure deformation law of seam floor[J]. Coal Science and Technology,2013,41(1):113-115,59. [21] 吴基文,翟晓荣,张海潮,等. 注浆加固与含水层改造底板采动效应孔巷电阻率CT探测研究[J]. 地球物理学进展,2015,30(2):920-927. doi: 10.6038/pg20150260WU Jiwen,ZHAI Xiaorong,ZHANG Haichao,et al. The electronic resistivity CT detection and research of holes and roadways on the mining effect of floors after grouting reinforcement and reconstruction of aquifers[J]. Progress in Geophysics,2015,30(2):920-927. doi: 10.6038/pg20150260 [22] 张平松,刘畅,欧元超,等. 准格尔煤田特厚煤层开采底板破坏特征综合测试研究[J]. 煤田地质与勘探,2021,49(1):263-269. doi: 10.3969/j.issn.1001-1986.2021.01.029ZHANG Pingsong,LIU Chang,OU Yuanchao,et al. Comprehensive testing research on floor damage characteristics of mining extra-thick seam in Jungar Coalfield[J]. Coal Geology & Exploration,2021,49(1):263-269. doi: 10.3969/j.issn.1001-1986.2021.01.029 [23] 杨海平,刘盛东,杨彩,等. 煤层顶底板采动破坏同步动态监测电性特征分析[J]. 工程地质学报,2021,29(4):1002-1009.YANG Haiping,LIU Shengdong,YANG Cai,et al. Analysis of electrical characteristics of mining destruction on coal seam roof and floor with simultaneous dynamic monitoring method[J]. Journal of Engineering Geology,2021,29(4):1002-1009. [24] LU Jingjin,WU Xiaoping,KLAUS S. Algebraic multigrid method for 3D DC resistivity modeling[J]. Chinese Journal of Geophysics,2010,53(3):700-707. [25] PIDLISECKY A,HABER E,KNIGHT R. RESINVM3D:a 3D resistivity inversion package[J]. Geophysics,2007,72(2):H1-H10. doi: 10.1190/1.2402499 [26] 徐永圻. 采矿学[M]. 徐州: 中国矿业大学出版社, 2003.XU Yongqi. Mining science[M]. Xuzhou: China University of Mining and Technology Press, 2003.