Design of metasurface dual-gas sensor based on VO2
-
摘要: 针对传统矿用气体传感器易受温度和环境湿度等因素的影响而导致稳定性不高的问题,基于局域表面等离子共振原理和二氧化钒(VO2)的相变特性,设计了一种基于VO2的超表面双气体传感器。该传感器结构由上下三层组成,表面由多层金属−介电−金属(MDM)结构组成。根据VO2的相变特点,通过改变施加的偏置电压,以电阻加热的形式加热金属板,精细控制VO2的温度,通过改变VO2的电导率来模拟VO2的不同状态。当VO2呈高温金属态时,上三层形成MDM结构, VO2表现出金属性质,并在1 721.3 nm激发局域表面等离子体共振(LSPR),实现甲烷检测,传感器的吸收率为94.3 %,甲烷灵敏度为4.21 nm/%。当VO2呈低温绝缘态时,下三层形成MDM结构,在2 694.6 nm激发LSPR,实现氢气检测,传感器的吸收率为95.9 %,氢气灵敏度为2.10 nm/%。当环境折射率发生变化时,VO2在2种状态下的吸收峰均发生了红移,且呈线性关系,可以用来检测环境折射率的变化。为验证该传感器的可行性,对6种不同体积分数的甲烷、氢气和4种不同的环境折射率进行了仿真和分析,结果表明:基于VO2的超表面双气体传感器可有效检测出较低浓度的甲烷和氢气,且灵敏度较现有的气体传感器有较大提升;谐振峰偏移量与环境折射率变化量和甲烷体积分数变化量的计算值和理论值误差很小,说明该传感器具有很高的准确性;通过分析环境折射率和谐振波长的关系,得出该传感器对环境折射率的变化同样具有较高的检测灵敏度。Abstract: The traditional mine gas sensor is vulnerable to the influence of temperature and ambient humidity and other factors, resulting in low stability. In order to solve the above problem, based on the principle of local surface plasmon resonance (LSPR) and the phase change characteristics of vanadium dioxide (VO2), a kind of metasurface dual-gas sensor based on VO2 is designed. The sensor structure is composed of three layers, and the surface is composed of multi-layer metal-dielectric-metal (MDM) structure. According to the phase change characteristics of VO2, the metal plate is heated in the form of resistance heating by changing the applied bias voltage. The temperature of VO2 is carefully controlled, and the different states of VO2 are simulated by changing the conductivity of VO2. When VO2 is in a high-temperature metal state, the upper three layers form MDM structure. VO2 shows metal properties and excites local surface plasmon resonance (LSPR) at 1721.3 nm to realize methane detection. The sensor's absorptance reaches 94.3%, and the methane sensitivity reaches 4.21 nm/%. When VO2 is in a low-temperature insulation state, the lower three layers form MDM structure. LSPR is excited at 2694.6 nm to realize hydrogen detection. The sensor's absorptance reaches 95.9%, and the hydrogen sensitivity reaches 2.10 nm/%. When the environmental refractive index changes, the absorption peaks of VO2 in both states are red-shifted and linear,which can be used to detect the change of the environmental refractive index. In order to verify the feasibility of the sensor, six different concentrations of methane, hydrogen and four different environmental refractive indexes are simulated and analyzed. The results show that the metasurface dual-gas sensor based on VO2 can effectively detect methane and hydrogen with lower concentration. The sensitivity is greatly improved compared with the existing gas sensors. The error between the calculated and theoretical values of the resonant peak shift and the environmental refractive index change and the methane volume fraction change is very small. This indicates that the sensor has high accuracy. By analyzing the relationship between the environmental refractive index and the resonant wavelength, it is concluded that the sensor also has high detection sensitivity when the environmental refractive index changes.
-
表 1 参数优化结果
Table 1. Parameter optimization results
序号 $ {l}_{1}/\mathrm{n}\mathrm{m} $ $ {d}/\mathrm{n}\mathrm{m} $ $ {r}/\mathrm{n}\mathrm{m} $ 灵敏度/(nm·%−1) 甲烷 氢气 1 90 20 100 4.16 1.00 2 120 3.09 0.95 3 140 3.34 0.71 4 40 100 2.64 0.67 5 120 2.92 1.23 6 140 2.70 0.91 7 60 100 3.71 0.67 8 120 3.25 0.87 9 140 3.24 0.90 10 100 20 100 3.6 1.00 11 120 3.43 1.80 12 140 3.71 0.90 13 40 100 3.10 1.00 14 120 4.21 2.10 15 140 3.04 0.91 16 60 100 3.04 1.00 17 120 3.05 0.95 18 140 3.05 0.90 19 110 20 100 4.32 1.01 20 120 2.22 0.75 21 140 2.91 0.90 22 40 100 3.75 0.67 23 120 2.36 1.00 24 140 3.32 0.91 25 60 100 3.19 0.66 26 120 2.78 0.75 27 140 2.93 0.71 表 2 超表面双气体传感器与现有气体传感器的灵敏度比较
Table 2. Comparison of sensitivity of metasurface dual-gas sensor with existing gas sensors
表 3 传感器环境折射率与甲烷灵敏度的理论值与计算值比较结果
Table 3. Comparison results of theoretical value and calculated value of ambient refractive index and methane sensitivity of the metasurface dual-gas sensor based on VO2
序号 $ {{K}}_{1{\rm{SET}}} $/
(nm·RIU−1)$ {{K}}_{2{\rm{SET}}} $/
(nm·%−1)$ {\Delta }{N} $ $ {\Delta }C $/% ${\Delta }\lambda$/nm $ {{K}}_{1{\rm{CAL}}} $/
(nm·RIU−1)$ {{K}}_{2{\rm{CAL}}} $/
(nm·%−1)1 375 −4.21 0.01 0.5 1.65 − − 2 0.02 0.5 5.40 375.0 −4.20 3 0.03 2.0 2.90 374.0 −4.20 4 0.04 0.5 12.95 374.6 −4.18 5 0.05 2.5 8.21 375.3 −4.22 6 0.06 2.5 11.95 374.0 −4.20 -
[1] 申琢. 煤矿瓦斯安全风险识别与评价研究[D]. 北京: 中国矿业大学(北京), 2019.SHEN Zhuo. Research on the identification and evaluation of coal mine gas safety risks [D]. Beijing: China University of Mining and Technology-Beijing, 2019. [2] 孙继平. 《煤矿安全规程》传感器设置修订意见[J]. 工矿自动化,2014,40(5):1-6.SUN Jiping. Proposal of revision for transducers setup of Coal Mine Safety Regulation[J]. Industry and Mine Automation,2014,40(5):1-6. [3] 门金龙,胡炜杰,蔡冲冲,等. 可燃气体传感器研究综述[J]. 科学技术与工程,2021,21(15):6123-6131. doi: 10.3969/j.issn.1671-1815.2021.15.005MEN Jinlong,HU Weijie,CAI Chongchong,et al. Review of combustible gas sensors[J]. Science Technology and Engineering,2021,21(15):6123-6131. doi: 10.3969/j.issn.1671-1815.2021.15.005 [4] 李昊. 载体衬底一体型的催化燃烧气体传感器的研究[D]. 天津: 河北工业大学, 2022.LI Hao. Research on catalytic combustion gas sensor integrated with support and substrate[D]. Tianjin: Hebei University of Technology, 2022. [5] 王海波. 低功耗一氧化碳传感器研究进展[J]. 工矿自动化,2021,47(7):72-78.WANG Haibo. Research progress of low-power carbon monoxide sensors[J]. Industry and Mine Automation,2021,47(7):72-78. [6] CHEN Cong, LIU Hai, ZHANG Yanzeng, et al. High-sensitive gas-mixture detection based on Mie resonance in slotted MDM metasurface[J]. Optik-International Journal for Light and Electron Optics, 2021, 242(5). https://doi.org/10.1016/j.ijleo.2021.167096. [7] HU Tao, BINGHAM C, STRIKWERDA A C, et al. Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization[J]. Physical Review B, 2008, 78(24). DOI: 10.1103/PhysRevB.78. [8] MISHRA S K,GUPTA B D. Surface plasmon resonance-based fiber optic chlorine gas sensor utilizing indium-oxide-doped tin oxide film[J]. Journal of Lightwave Technology,2015,33(13):2770-2776. doi: 10.1109/JLT.2015.2412615 [9] SU Dongsheng,TSAI D P,YEN T J,et al. Ultrasensitive and selective gas sensor based on a channel plasmonic structure with an enormous hot spot region[J]. ACS Sensors,2019,4(11):2900-2907. doi: 10.1021/acssensors.9b01225 [10] PROENÇA M,RODRIGUES M S. Optimization of Au:CuO thin films by plasma surface modification for high-resolution LSPR gas sensing at room temperature[J]. Sensors,2022,22(18). DOI: 10.3390/s22187043. [11] XU Xiaoqing,HU Xiaolin,CHEN Xiaoshu,et al. Engineering a large scale indium nanodot array for refractive index sensing[J]. ACS Applied Materials & Interfaces,2016,8(46):31871-31877. doi: 10.1021/acsami.6b11413 [12] MENG Liqing,LI Zongxiao,DENG Yousheng. Study on the growth kinetics of Au nanorods based on local surface plasmon resonance[J]. Gold Bulletin,2021,54(2):89-95. doi: 10.1007/s13404-021-00299-0 [13] JIANG Shouzhen,LI Zhe,ZHANG Chao,et al. A novel U-bent plastic optical fibre local surface plasmon resonance sensor based on a graphene and silver nanoparticle hybrid structure[J]. Journal of Physics D:Applied Physics,2017,50(16). DOI: 10.1088/1361-6463/aa628c. [14] LING Xihu,HU Min,LIU Shenggang. Investigation on surface plasmon polaritons and localized surface plasmon production mechanism in micro-nano structures[J]. Journal of Electronic Science and Technology,2022,20(1):20-29. [15] 刘英波. 基于表面等离子体共振效应增强的生物分析新方法[D]. 淄博: 山东理工大学, 2018.LIU Yingbo. A new approach to bioanalysis based on enhanced surface plasmon resonance effects[D]. Zibo: Shandong University of Technology, 2018. [16] 罗明海,徐马记,黄其伟,等. VO2金属−绝缘体相变机理的研究进展[J]. 物理学报,2016,65(4):5-12. doi: 10.7498/aps.65.047201LUO Minghai,XU Maji,HUANG Qiwei,et al. Advances in the mechanism of VO2 metal-insulator phase transitions[J]. Journal of Physics,2016,65(4):5-12. doi: 10.7498/aps.65.047201 [17] 孙冰,田丰,汪鹏,等. 纳米薄膜气敏技术发展与展望[J]. 传感器世界,2016,22(2):19-23. doi: 10.3969/j.issn.1006-883X.2016.02.003SUN Bing,TIAN Feng,WANG Peng,et al. Development and prospect of nano-thin film gas sensing technology[J]. Sensor World,2016,22(2):19-23. doi: 10.3969/j.issn.1006-883X.2016.02.003 [18] 王帅. 基于SPR的光纤甲烷气体传感研究[D]. 西安: 西安石油大学, 2021.WANG Shuai. Research on fiber methane gas sensing based on SPR sensing[D]. Xi'an: Xi'an Shiyou University, 2021. [19] XIONG Shilin,WANG Yue,CHENG Jiayang,et al. Multi-color method for the self-correction of the air refractive index[J]. Optics Letters,2021,46(15):3785-3788. doi: 10.1364/OL.432461 [20] NOOR A. Wideband dual polarized fractal metamaterial absorber for millimeter-wave bolometers[J]. Optik,2022:255. DOI: 10.1016/j.ijleo.2022.168691. [21] LIM S, JO S, LEE J, et al. Review for device compositions of localized surface plasmon resonance sensors[J]. Applied Science and Convergence Technology 2022, 31: 35-39. [22] YANG Jiachun,CHE Xin,SHEN Rui,et al. High-sensitivity photonic crystal fiber long-period grating methane sensor with cryptophane-A-6Me absorbed on a PAA-CNTs/PAH nanofilm[J]. Optics Express,2017,25(17):20258-20267. doi: 10.1364/OE.25.020258 [23] LIU Hai,WANG Meng,WANG Qing,et al. Simultaneous measurement of hydrogen and methane based on PCF-SPR structure with compound film-coated side-holes[J]. Optical Fiber Technology,2018,45(11):1-7. [24] YANG Jianchun,TAO Chuanyi,LI Xueming,et al. Long-period fiber grating sensor with a styrene-acrylonitrile nano-film incorporating cryptophane A for methane detection[J]. Optics Express,2011,19(15):14696-14706. doi: 10.1364/OE.19.014696 [25] LIU Hai,CHEN Cong,ZHANG Yanzeng,et al. A high-sensitivity methane sensor with localized surface plasmon resonance behavior in an improved hexagonal gold nanoring array[J]. Sensors,2019,19(21). DOI: 10.3390/s19214803. [26] SCHEERLINCK S,DUBRUEL P,BIENSTMAN P,et al. Metal grating patterning on fiber facets by UV-based nano imprint and transfer lithography using optical alignment[J]. Journal of Lightwave Technology,2009,27(10):1415-1420. doi: 10.1109/JLT.2008.2004955 [27] YANG Xuan,ILERI N,LARSON C C,et al. Nanopillar array on a fiber facet for highly sensitive surface-enhanced Raman scattering[J]. Optics Express,2012,20(22):24819-24826. doi: 10.1364/OE.20.024819 [28] RICCIARDI A,CONSALES M,QUERO G,et al. Lab-on-fiber devices as an all around platform for sensing[J]. Optical Fiber Technology,2013,19(6):772-784. [29] BDA B,YRB C,TTL D,et al. MoS2-enhanced epoxy-based plasmonic fiber-optic sensor for selective and sensitive detection of methanol-science direct[J]. Sensors and Actuators B:Chemical,2020:305. DOI: 10.1016/j.snb.2019.127513.