留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于VO2的超表面双气体传感器设计

刘海 万寅辉 陈聪 高鹏 戴耀威 赵佳明 王馨艳 路祥宇 赵思怡

刘海,万寅辉,陈聪,等. 基于VO2的超表面双气体传感器设计[J]. 工矿自动化,2023,49(1):19-27, 79.  doi: 10.13272/j.issn.1671-251x.18041
引用本文: 刘海,万寅辉,陈聪,等. 基于VO2的超表面双气体传感器设计[J]. 工矿自动化,2023,49(1):19-27, 79.  doi: 10.13272/j.issn.1671-251x.18041
LIU Hai, WAN Yinhui, CHEN Cong, et al. Design of metasurface dual-gas sensor based on VO2[J]. Journal of Mine Automation,2023,49(1):19-27, 79.  doi: 10.13272/j.issn.1671-251x.18041
Citation: LIU Hai, WAN Yinhui, CHEN Cong, et al. Design of metasurface dual-gas sensor based on VO2[J]. Journal of Mine Automation,2023,49(1):19-27, 79.  doi: 10.13272/j.issn.1671-251x.18041

基于VO2的超表面双气体传感器设计

doi: 10.13272/j.issn.1671-251x.18041
基金项目: 国家自然科学基金项目(51874301);国家重点研发计划项目(2021YFC2902702);徐州市重点研发计划项目(KC20162)。
详细信息
    作者简介:

    刘海(1983—),男,湖北仙桃人,教授,博士,博士研究生导师,主要研究方向为气体检测、光电器件等,E-mail:lhai_hust@hotmail.com

  • 中图分类号: TD679

Design of metasurface dual-gas sensor based on VO2

  • 摘要: 针对传统矿用气体传感器易受温度和环境湿度等因素的影响而导致稳定性不高的问题,基于局域表面等离子共振原理和二氧化钒(VO2)的相变特性,设计了一种基于VO2的超表面双气体传感器。该传感器结构由上下三层组成,表面由多层金属−介电−金属(MDM)结构组成。根据VO2的相变特点,通过改变施加的偏置电压,以电阻加热的形式加热金属板,精细控制VO2的温度,通过改变VO2的电导率来模拟VO2的不同状态。当VO2呈高温金属态时,上三层形成MDM结构, VO2表现出金属性质,并在1 721.3 nm激发局域表面等离子体共振(LSPR),实现甲烷检测,传感器的吸收率为94.3 %,甲烷灵敏度为4.21 nm/%。当VO2呈低温绝缘态时,下三层形成MDM结构,在2 694.6 nm激发LSPR,实现氢气检测,传感器的吸收率为95.9 %,氢气灵敏度为2.10 nm/%。当环境折射率发生变化时,VO2在2种状态下的吸收峰均发生了红移,且呈线性关系,可以用来检测环境折射率的变化。为验证该传感器的可行性,对6种不同体积分数的甲烷、氢气和4种不同的环境折射率进行了仿真和分析,结果表明:基于VO2的超表面双气体传感器可有效检测出较低浓度的甲烷和氢气,且灵敏度较现有的气体传感器有较大提升;谐振峰偏移量与环境折射率变化量和甲烷体积分数变化量的计算值和理论值误差很小,说明该传感器具有很高的准确性;通过分析环境折射率和谐振波长的关系,得出该传感器对环境折射率的变化同样具有较高的检测灵敏度。

     

  • 图  1  基于VO2的超表面双气体传感器结构

    Figure  1.  Structure of metasurface dual-gas sensor based on VO2

    图  2  基于VO2的超表面双气体传感器的单元结构

    Figure  2.  Cell structure of metasurface dual-gas sensor based on VO2

    图  3  基于VO2的超表面双气体传感器在不同气体体积分数下的吸收光谱

    Figure  3.  Absorption spectra of metasurface dual-gas sensor based on VO2 under different gas volume fraction

    图  4  基于VO2的超表面双气体传感器在不同环境折射率下的吸收光谱

    Figure  4.  Absorption spectrum of metasurface dual-gas sensor based on VO2 at different ambient refractive indexes

    图  5  基于VO2的超表面双气体传感器的等效阻抗

    Figure  5.  The equivalent impedance of the metasurface dual-gas sensor based on VO2

    图  6  完美吸收峰处VO2不同相态下的表面电场

    Figure  6.  Surface electric field plot of VO2 at perfect absorption peak

    图  7  LSPR谐振峰偏移量与气体体积分数的关系

    Figure  7.  Relation between LSPR resonant peak shift and gas volume fraction

    图  8  环境折射率与谐振波长的关系

    Figure  8.  The relation between ambient refractive index and resonant wavelength

    图  9  基于超表面转移法的下三层结构加工工艺流程

    Figure  9.  Processing technical process of lower three-layer structure based on metasurface transfer method

    图  10  矿井纤端超表面双气体传感系统

    Figure  10.  Fiber end metasurface dual-gas sensing system in coal mine

    表  1  参数优化结果

    Table  1.   Parameter optimization results

    序号$ {l}_{1}/\mathrm{n}\mathrm{m} $$ {d}/\mathrm{n}\mathrm{m} $$ {r}/\mathrm{n}\mathrm{m} $灵敏度/(nm·%−1)
    甲烷氢气
    190201004.161.00
    21203.090.95
    31403.340.71
    4401002.640.67
    51202.921.23
    61402.700.91
    7601003.710.67
    81203.250.87
    91403.240.90
    10100201003.61.00
    111203.431.80
    121403.710.90
    13401003.101.00
    141204.212.10
    151403.040.91
    16601003.041.00
    171203.050.95
    181403.050.90
    19110201004.321.01
    201202.220.75
    211402.910.90
    22401003.750.67
    231202.361.00
    241403.320.91
    25601003.190.66
    261202.780.75
    271402.930.71
    下载: 导出CSV

    表  2  超表面双气体传感器与现有气体传感器的灵敏度比较

    Table  2.   Comparison of sensitivity of metasurface dual-gas sensor with existing gas sensors

    序号文献出处原理类别灵敏度/(nm·%−1)
    甲烷氢气
    1文献[22]PCF−SPR1.078
    2文献[23]PCF−SPR1.990.19
    3文献[24]LPFG0.375
    4文献[25]LSPR1.02
    5本文LSPR4.212.10
    下载: 导出CSV

    表  3  传感器环境折射率与甲烷灵敏度的理论值与计算值比较结果

    Table  3.   Comparison results of theoretical value and calculated value of ambient refractive index and methane sensitivity of the metasurface dual-gas sensor based on VO2

    序号$ {{K}}_{1{\rm{SET}}} $/
    (nm·RIU−1)
    $ {{K}}_{2{\rm{SET}}} $/
    (nm·%−1)
    $ {\Delta }{N} $$ {\Delta }C $/%${\Delta }\lambda$/nm$ {{K}}_{1{\rm{CAL}}} $/
    (nm·RIU−1)
    $ {{K}}_{2{\rm{CAL}}} $/
    (nm·%−1)
    1375−4.210.010.51.65
    20.020.55.40375.0−4.20
    30.032.02.90374.0−4.20
    40.040.512.95374.6−4.18
    50.052.58.21375.3−4.22
    60.062.511.95374.0−4.20
    下载: 导出CSV
  • [1] 申琢. 煤矿瓦斯安全风险识别与评价研究[D]. 北京: 中国矿业大学(北京), 2019.

    SHEN Zhuo. Research on the identification and evaluation of coal mine gas safety risks [D]. Beijing: China University of Mining and Technology-Beijing, 2019.
    [2] 孙继平. 《煤矿安全规程》传感器设置修订意见[J]. 工矿自动化,2014,40(5):1-6.

    SUN Jiping. Proposal of revision for transducers setup of Coal Mine Safety Regulation[J]. Industry and Mine Automation,2014,40(5):1-6.
    [3] 门金龙,胡炜杰,蔡冲冲,等. 可燃气体传感器研究综述[J]. 科学技术与工程,2021,21(15):6123-6131. doi: 10.3969/j.issn.1671-1815.2021.15.005

    MEN Jinlong,HU Weijie,CAI Chongchong,et al. Review of combustible gas sensors[J]. Science Technology and Engineering,2021,21(15):6123-6131. doi: 10.3969/j.issn.1671-1815.2021.15.005
    [4] 李昊. 载体衬底一体型的催化燃烧气体传感器的研究[D]. 天津: 河北工业大学, 2022.

    LI Hao. Research on catalytic combustion gas sensor integrated with support and substrate[D]. Tianjin: Hebei University of Technology, 2022.
    [5] 王海波. 低功耗一氧化碳传感器研究进展[J]. 工矿自动化,2021,47(7):72-78.

    WANG Haibo. Research progress of low-power carbon monoxide sensors[J]. Industry and Mine Automation,2021,47(7):72-78.
    [6] CHEN Cong, LIU Hai, ZHANG Yanzeng, et al. High-sensitive gas-mixture detection based on Mie resonance in slotted MDM metasurface[J]. Optik-International Journal for Light and Electron Optics, 2021, 242(5). https://doi.org/10.1016/j.ijleo.2021.167096.
    [7] HU Tao, BINGHAM C, STRIKWERDA A C, et al. Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization[J]. Physical Review B, 2008, 78(24). DOI: 10.1103/PhysRevB.78.
    [8] MISHRA S K,GUPTA B D. Surface plasmon resonance-based fiber optic chlorine gas sensor utilizing indium-oxide-doped tin oxide film[J]. Journal of Lightwave Technology,2015,33(13):2770-2776. doi: 10.1109/JLT.2015.2412615
    [9] SU Dongsheng,TSAI D P,YEN T J,et al. Ultrasensitive and selective gas sensor based on a channel plasmonic structure with an enormous hot spot region[J]. ACS Sensors,2019,4(11):2900-2907. doi: 10.1021/acssensors.9b01225
    [10] PROENÇA M,RODRIGUES M S. Optimization of Au:CuO thin films by plasma surface modification for high-resolution LSPR gas sensing at room temperature[J]. Sensors,2022,22(18). DOI: 10.3390/s22187043.
    [11] XU Xiaoqing,HU Xiaolin,CHEN Xiaoshu,et al. Engineering a large scale indium nanodot array for refractive index sensing[J]. ACS Applied Materials & Interfaces,2016,8(46):31871-31877. doi: 10.1021/acsami.6b11413
    [12] MENG Liqing,LI Zongxiao,DENG Yousheng. Study on the growth kinetics of Au nanorods based on local surface plasmon resonance[J]. Gold Bulletin,2021,54(2):89-95. doi: 10.1007/s13404-021-00299-0
    [13] JIANG Shouzhen,LI Zhe,ZHANG Chao,et al. A novel U-bent plastic optical fibre local surface plasmon resonance sensor based on a graphene and silver nanoparticle hybrid structure[J]. Journal of Physics D:Applied Physics,2017,50(16). DOI: 10.1088/1361-6463/aa628c.
    [14] LING Xihu,HU Min,LIU Shenggang. Investigation on surface plasmon polaritons and localized surface plasmon production mechanism in micro-nano structures[J]. Journal of Electronic Science and Technology,2022,20(1):20-29.
    [15] 刘英波. 基于表面等离子体共振效应增强的生物分析新方法[D]. 淄博: 山东理工大学, 2018.

    LIU Yingbo. A new approach to bioanalysis based on enhanced surface plasmon resonance effects[D]. Zibo: Shandong University of Technology, 2018.
    [16] 罗明海,徐马记,黄其伟,等. VO2金属−绝缘体相变机理的研究进展[J]. 物理学报,2016,65(4):5-12. doi: 10.7498/aps.65.047201

    LUO Minghai,XU Maji,HUANG Qiwei,et al. Advances in the mechanism of VO2 metal-insulator phase transitions[J]. Journal of Physics,2016,65(4):5-12. doi: 10.7498/aps.65.047201
    [17] 孙冰,田丰,汪鹏,等. 纳米薄膜气敏技术发展与展望[J]. 传感器世界,2016,22(2):19-23. doi: 10.3969/j.issn.1006-883X.2016.02.003

    SUN Bing,TIAN Feng,WANG Peng,et al. Development and prospect of nano-thin film gas sensing technology[J]. Sensor World,2016,22(2):19-23. doi: 10.3969/j.issn.1006-883X.2016.02.003
    [18] 王帅. 基于SPR的光纤甲烷气体传感研究[D]. 西安: 西安石油大学, 2021.

    WANG Shuai. Research on fiber methane gas sensing based on SPR sensing[D]. Xi'an: Xi'an Shiyou University, 2021.
    [19] XIONG Shilin,WANG Yue,CHENG Jiayang,et al. Multi-color method for the self-correction of the air refractive index[J]. Optics Letters,2021,46(15):3785-3788. doi: 10.1364/OL.432461
    [20] NOOR A. Wideband dual polarized fractal metamaterial absorber for millimeter-wave bolometers[J]. Optik,2022:255. DOI: 10.1016/j.ijleo.2022.168691.
    [21] LIM S, JO S, LEE J, et al. Review for device compositions of localized surface plasmon resonance sensors[J]. Applied Science and Convergence Technology 2022, 31: 35-39.
    [22] YANG Jiachun,CHE Xin,SHEN Rui,et al. High-sensitivity photonic crystal fiber long-period grating methane sensor with cryptophane-A-6Me absorbed on a PAA-CNTs/PAH nanofilm[J]. Optics Express,2017,25(17):20258-20267. doi: 10.1364/OE.25.020258
    [23] LIU Hai,WANG Meng,WANG Qing,et al. Simultaneous measurement of hydrogen and methane based on PCF-SPR structure with compound film-coated side-holes[J]. Optical Fiber Technology,2018,45(11):1-7.
    [24] YANG Jianchun,TAO Chuanyi,LI Xueming,et al. Long-period fiber grating sensor with a styrene-acrylonitrile nano-film incorporating cryptophane A for methane detection[J]. Optics Express,2011,19(15):14696-14706. doi: 10.1364/OE.19.014696
    [25] LIU Hai,CHEN Cong,ZHANG Yanzeng,et al. A high-sensitivity methane sensor with localized surface plasmon resonance behavior in an improved hexagonal gold nanoring array[J]. Sensors,2019,19(21). DOI: 10.3390/s19214803.
    [26] SCHEERLINCK S,DUBRUEL P,BIENSTMAN P,et al. Metal grating patterning on fiber facets by UV-based nano imprint and transfer lithography using optical alignment[J]. Journal of Lightwave Technology,2009,27(10):1415-1420. doi: 10.1109/JLT.2008.2004955
    [27] YANG Xuan,ILERI N,LARSON C C,et al. Nanopillar array on a fiber facet for highly sensitive surface-enhanced Raman scattering[J]. Optics Express,2012,20(22):24819-24826. doi: 10.1364/OE.20.024819
    [28] RICCIARDI A,CONSALES M,QUERO G,et al. Lab-on-fiber devices as an all around platform for sensing[J]. Optical Fiber Technology,2013,19(6):772-784.
    [29] BDA B,YRB C,TTL D,et al. MoS2-enhanced epoxy-based plasmonic fiber-optic sensor for selective and sensitive detection of methanol-science direct[J]. Sensors and Actuators B:Chemical,2020:305. DOI: 10.1016/j.snb.2019.127513.
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  256
  • HTML全文浏览量:  52
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-11
  • 修回日期:  2023-01-05
  • 网络出版日期:  2023-01-17

目录

    /

    返回文章
    返回