留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于改进相似模型的采煤机轴承剩余寿命预测方法

李晓昆 耿毅德 王宏伟 付翔 王然风

李晓昆,耿毅德,王宏伟,等. 基于改进相似模型的采煤机轴承剩余寿命预测方法[J]. 工矿自动化,2023,49(5):96-103.  doi: 10.13272/j.issn.1671-251x.18018
引用本文: 李晓昆,耿毅德,王宏伟,等. 基于改进相似模型的采煤机轴承剩余寿命预测方法[J]. 工矿自动化,2023,49(5):96-103.  doi: 10.13272/j.issn.1671-251x.18018
LI Xiaokun, GENG Yide, WANG Hongwei, et al. A method for predicting the remaining useful life of shearer bearings based on improved similarity model[J]. Journal of Mine Automation,2023,49(5):96-103.  doi: 10.13272/j.issn.1671-251x.18018
Citation: LI Xiaokun, GENG Yide, WANG Hongwei, et al. A method for predicting the remaining useful life of shearer bearings based on improved similarity model[J]. Journal of Mine Automation,2023,49(5):96-103.  doi: 10.13272/j.issn.1671-251x.18018

基于改进相似模型的采煤机轴承剩余寿命预测方法

doi: 10.13272/j.issn.1671-251x.18018
基金项目: 国家自然科学基金项目(52274157);“科技兴蒙”行动重点专项项目(2022EEDSKJXM010);山西省基础研究计划项目(202103021223123);山西省重点研发计划项目(202102100401015);山西省揭榜招标项目(20201101005)。
详细信息
    作者简介:

    李晓昆(1998—),男,河北承德人,硕士研究生,主要研究方向为煤矿设备故障诊断与预测性维护研究,E-mail:1615098598@qq.com

    通讯作者:

    王然风(1970—),男,山西长治人,副教授,博士,主要研究方向为智能化开采与分选,E-mail:wrf197010@126.com

  • 中图分类号: TD67

A method for predicting the remaining useful life of shearer bearings based on improved similarity model

  • 摘要: 采煤机轴承退化过程并非简单的线性或指数关系,应分为不同阶段进行分析。而目前的采煤机轴承剩余使用寿命(RUL)预测方法未充分考虑该因素。针对该问题,提出了一种基于改进相似模型的采煤机轴承剩余寿命预测方法。采用通用的相似模型描述设备退化过程,在此基础上通过对均方根聚类分析,将轴承退化过程划分为平稳运行阶段、初始退化阶段和加速退化阶段,借助传统相似模型思路分段计算采煤机轴承的健康状态并拟合得到退化曲线样本库,通过对离线样本库数据和在线采煤机实时数据进行数据预处理和相似性分析,最终得到采煤机轴承RUL。实验结果表明:基于改进相似模型的采煤机轴承RUL预测方法的误差绝对值均值较卷积门控循环单元(ConvGRU)、空间卷积长短时记忆神经网络(ConvLSTM)、卷积神经网络(CNN)、自组织映射神经网络(SOM)、循环神经网络(RNN)、传统相似模型分别降低了30.49%,7.54%,16.98%,24.74%,17.96%,9.49%,可以较好地预测轴承RUL。现场试验结果表明:对采煤机轴承连续监测87 d,轴承健康状态从0.997逐渐下降到0.972,与现场采煤机轴承实际使用情况基本吻合,验证了该方法的有效性。

     

  • 图  1  采煤机轴承RUL预测框架

    Figure  1.  Remaining useful life prediction framework of shearer bearing

    图  2  基于改进相似模型的采煤机轴承RUL预测流程

    Figure  2.  Remaining useful life prediction process of shearer bearing based on improved similarity model

    图  3  基于改进相似模型的采煤机轴承RUL预测方法

    Figure  3.  Remaining useful life prediction method of shearer bearing based on improved similarity model

    图  4  HS划分结果

    Figure  4.  Health Stage division results

    图  5  退化曲线族

    Figure  5.  Degradation curve family

    图  6  井下传感器布置点位

    Figure  6.  Arrangement points of underground sensors

    图  7  采煤机轴承振动信号

    Figure  7.  Vibration signal of shearer bearing

    图  8  采煤机轴承振动信号频谱

    Figure  8.  Spectrum of vibration signal of shearer bearing

    图  9  采煤机轴承退化曲线

    Figure  9.  Degradation curve of shearer bearing

    表  1  IMS Center 的滚动轴承全生命周期数据集

    Table  1.   Rolling bearing life cycle data set from IMS Center

    试验编号测量方向样本数量样本长度运行时间/d试验描述
    试验AX/Y82 155343号轴承内圈故障
    4号轴承滚动体故障
    试验BX498481号轴承外圈故障
    试验CX46 324513号轴承外圈故障
    下载: 导出CSV

    表  2  可识别性系数归一化结果

    Table  2.   Normalization results of recognizability coefficient

    健康指标可识别性系数归一化健康指标可识别性系数归一化
    峭度0.694 3峰值0.450 7
    脉冲指标0.475 3RMS1
    波形0.853 2最大值0.632 6
    裕度0.417 9最小值0.189 8
    歪度0.147 4平均值0
    下载: 导出CSV

    表  3  不同预测方法对比

    Table  3.   Comparison of different prediction methods %

    方法不同测试集预测误差绝对值误差绝对值
    均值
    轴承1−3轴承1−4轴承1−6轴承1−7轴承2−5轴承2−6
    本文方法22.2819.5716.4313.6721.2317.3918.43
    ConvGRU89.5344.2129.1734.8760.8434.8848.92
    ConvLSTM33.6847.2423.283.3039.808.5225.97
    CNN−HI48.5253.5719.3916.2756.1318.6535.41
    SOM−HI31.7662.7632.8811.0968.6151.9443.17
    RNN−HI43.2867.5521.3317.8354.3713.9536.39
    相似模型方法30.5236.6821.6119.6532.1326.9527.92
    下载: 导出CSV

    表  4  采煤机轴承HC与运行时间关系

    Table  4.   Relationship between health condition and operation time of shearer bearing

    运行时间/d122446687
    采煤机轴承HC0.9970.9920.9840.9790.972
    下载: 导出CSV
  • [1] 王国法,刘峰,庞义辉,等. 煤矿智能化——煤炭工业高质量发展的核心技术支撑[J]. 煤炭学报,2019,44(2):349-355.

    WANG Guofa,LIU Feng,PANG Yihui,et al. Coal mine intellectualization:the core technology of high quality development[J]. Journal of China Coal Society,2019,44(2):349-355.
    [2] 任怀伟. 我国煤矿综采装备技术的主要进展和发展趋势[J]. 煤矿开采,2014,19(6):11-16.

    REN Huaiwei. Major process and development tendency of full-mechanized mining equipments in China[J]. Coal Mining Technology,2014,19(6):11-16.
    [3] 毛清华,张勇强,赵晓勇,等. 变速工况下采煤机行星齿轮传动系统故障诊断[J]. 工矿自动化,2021,47(7):8-13.

    MAO Qinghua,ZHANG Yongqiang,ZHAO Xiaoyong,et al. Fault diagnosis method of shearer planetary gear transmission system under variable speed conditions[J]. Industry and Mine Automation,2021,47(7):8-13.
    [4] 丁华,刘恒强,杨琨,等. 基于云化QFD的采煤机服务型制造模型构建[J]. 煤炭学报,2019,44(2):618-627.

    DING Hua,LIU Hengqiang,YANG Kun,et al. Construction of SOM model of shearer based on QFD-ECM[J]. Journal of China Coal Society,2019,44(2):618-627.
    [5] JARDINE K S A,LIN Daming,BANJEVIC D. A review on machinery diagnostics and prognostics implementing condition-based maintenance[J]. Mechanical Systems & Signal Processing,2006,20(7):1483-1510.
    [6] KAN M S,TAN A C C,MATHEW J. A review on prognostic techniques for non-stationary and non-linear rotating systems[J]. Mechanical Systems and Signal Processing,2015,62/63:1-20. doi: 10.1016/j.ymssp.2015.02.016
    [7] ZHAO Zeqi,LIANG Bin,WANG Xueqian,et al. Remaining useful life prediction of aircraft engine based on degradation pattern learning[J]. Reliability Engineering and System Safety,2017,164:74-83. doi: 10.1016/j.ress.2017.02.007
    [8] DJEZIRI M A,BENMOUSSA S,SANCHEZ R. Hybrid method for remaining useful life prediction in wind turbine systems[J]. Renewable Energy,2017,116:173-187.
    [9] HU Jinqiu,ZHANG Laibin,MA Lin,et al. An integrated safety prognosis model for complex system based on dynamic Bayesian network and ant colony algorithm[J]. Expert Systems with Applications,2011,38(3):1431-1446. doi: 10.1016/j.eswa.2010.07.050
    [10] YANG Lei,LEE J. Bayesian belief network-based approach for diagnostics and prognostics of semiconductor manufacturing system[J]. Robotics and Computer-Integrated Manufacturing,2012,28(1):66-74. doi: 10.1016/j.rcim.2011.06.007
    [11] LEI Yaguo,LI Naipeng,LI Ningbo,et al. Machinery health prognostics:a systematic review from data acquisition to RUL prediction[J]. Mechanical Systems and Signal Processing,2018,104:799-834. doi: 10.1016/j.ymssp.2017.11.016
    [12] 王昆, 郭迎清, 赵万里, 等. 基于SSAE和相似性匹配的航空发动机剩余寿命预测[J/OL]. 北京航空航天大学学报: 1-13[2023-03-30]. https://doi.org/10.13700/j.bh.1001-5965.2021.0741.

    WANG Kun, GUO Yingqing, ZHAO Wanli, et al. Remaining useful life prediction of aeroengine based on SSAE and similarity matching[J/OL]. Journal of Beijing University of Aeronautics and Astronautics: 1-13[2023-03-30]. https://doi.org/10.13700/j.bh.1001-5965.2021.0741.
    [13] 于倩影, 李娟, 戴洪德, 等. 基于Lasso变量选择的航空发动机相似性剩余寿命预测[J/OL]. 航空动力学报: 1-8[2023-03-30]. https://doi.org/10.13224/j.cnki.jasp.20210516.

    YU Qianying, LI Juan, DAI Hongde, et al. Lasso based variable selection for similarity remaining useful life prediction of aero-engine[J/OL]. Journal of Aerospace Power: 1-8[2023-03-30]. https://doi.org/10.13224/j.cnki.jasp.20210516.
    [14] 万安平,陈坚红,盛德仁,等. 基于多重环境时间相似理论的燃气轮机热通道部件剩余寿命预测方法[J]. 中国电机工程学报,2013,33(5):95-101,16.

    WAN Anping,CHEN Jianhong,SHENG Deren,et al. Residual life prediction method for gas turbine HGP component based on multi-environmental time similarity theory[J]. Proceedings of the CSEE,2013,33(5):95-101,16.
    [15] 陈云翔,饶益,蔡忠义,等. 基于改进相似性的装备部件剩余寿命预测及经济性储备策略[J]. 系统工程与电子技术,2021,43(9):2688-2696.

    CHEN Yunxiang,RAO Yi,CAI Zhongyi,et al. Remaining useful lifetime prediction and economic reserve strategy of equipment components based on improved similarity[J]. Systems Engineering and Electronics,2021,43(9):2688-2696.
    [16] 任博,董兴辉,郑凯. 基于相似性的风电动机组轴承剩余寿命预测方法[J]. 机械设计与研究,2016,32(4):101-104.

    REN Bo,DONG Xinghui,ZHENG Kai. Research on similarity-based component remaining life prediction of wind turbine bearing[J]. Machine Design & Research,2016,32(4):101-104.
    [17] 丁华,杨亮亮,杨兆建,等. 数字孪生与深度学习融合驱动的采煤机健康状态预测[J]. 中国机械工程,2020,31(7):815-823.

    DING Hua,YANG Liangliang,YANG Zhaojian,et al. Health prediction of shearers driven by digital twin and deep learning[J]. China Mechanical Engineering,2020,31(7):815-823.
    [18] 刘晓波,孔屹刚,李涛,等. 采煤机调高泵隐半马尔可夫模型磨损故障预测[J]. 科学技术与工程,2020,20(29):11980-11986.

    LIU Xiaobo,KONG Yigang,LI Tao,et al. Wear fault prognostics of hidden semi-markov model of shearer pump[J]. Science Technology and Engineering,2020,20(29):11980-11986.
    [19] 孙永新. 煤机设备轴承剩余寿命预测方法研究[J]. 工矿自动化,2021,47(11):126-130.

    SUN Yongxin. Research on bearing residual life prediction method of coal mine machinery equipment[J]. Industry and Mine Automation,2021,47(11):126-130.
    [20] QIU Hai,LEE J,LIN Jing,et al. Wavelet filter-based weak signature detection method and its application on rolling element bearing prognostics[J]. Journal of Sound and Vibration,2006,289(4/5):1066-1090.
    [21] 赵志宏,李晴,李春秀. 基于卷积GRU注意力的设备剩余寿命预测[J]. 振动. 测试与诊断,2022,42(3):572-579,622.

    ZHAO Zhihong,LI Qing,LI Chunxiu. Remaining useful life prediction based on conv GRU-attention method[J]. Journal of Vibration,Measurement & Diagnosis,2022,42(3):572-579,622.
    [22] 王久健,杨绍普,刘永强,等. 一种基于空间卷积长短时记忆神经网络的轴承剩余寿命预测方法[J]. 机械工程学报,2021,57(21):88-95. doi: 10.3901/JME.2021.21.088

    WANG Jiujian,YANG Shaopu,LIU Yongqiang,et al. A method of bearing remaining useful life estimation based on convolutional long short-term memory neural network[J]. Journal of Mechanical Engineering,2021,57(21):88-95. doi: 10.3901/JME.2021.21.088
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  181
  • HTML全文浏览量:  30
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-22
  • 修回日期:  2023-02-20
  • 网络出版日期:  2023-05-09

目录

    /

    返回文章
    返回