留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于一体化模型的矿用变频器散热性能分析

王越 史晗 荣相 蒋德智

王越,史晗,荣相,等. 基于一体化模型的矿用变频器散热性能分析[J]. 工矿自动化,2023,49(2):115-124.  doi: 10.13272/j.issn.1671-251x.18017
引用本文: 王越,史晗,荣相,等. 基于一体化模型的矿用变频器散热性能分析[J]. 工矿自动化,2023,49(2):115-124.  doi: 10.13272/j.issn.1671-251x.18017
WANG Yue, SHI Han, RONG Xiang, et al. Analysis of heat dissipation performance of mine inverter based on the integrated model[J]. Journal of Mine Automation,2023,49(2):115-124.  doi: 10.13272/j.issn.1671-251x.18017
Citation: WANG Yue, SHI Han, RONG Xiang, et al. Analysis of heat dissipation performance of mine inverter based on the integrated model[J]. Journal of Mine Automation,2023,49(2):115-124.  doi: 10.13272/j.issn.1671-251x.18017

基于一体化模型的矿用变频器散热性能分析

doi: 10.13272/j.issn.1671-251x.18017
基金项目: 国家级安全生产监管监察技术支撑能力建设项目(发改投资〔2019〕704-001);天地科技股份有限公司科技创新创业资金专项产学研科技合作项目(2020-2-TD-CXY003)。
详细信息
    作者简介:

    王越(1994—),男,山西阳泉人,硕士,现主要从事矿用电气产品研发工作,E-mail:m18635372893@163.com

  • 中图分类号: TD608

Analysis of heat dissipation performance of mine inverter based on the integrated model

  • 摘要: 矿用变频器空间密闭,运行过程中内部功率器件自身会产生大量热量,易产生热退化和热失效现象。现有研究主要是针对矿用变频器某类功率器件或散热器进行单独分析,未考虑它们相互之间的热交换作用,且现有研究与矿用变频器运行状态的结合不够紧密,导致生热和传热过程与实际情况偏差较大,降低了散热性能分析的准确度和全面性。针对上述问题,以630 kW/1 140 V四象限矿用变频器为研究对象,基于一体化模型对矿用变频器散热性能进行分析。建立了考虑等效电阻的矿用变频器主电路拓扑模型,分析母排与电缆、充/放电电阻、吸收电阻、IGBT模块、输出电抗器的电气特性并计算功率损耗。采用强制水冷+风冷+自然冷却方式对矿用变频器的散热系统进行优化设计。将IGBT模块、吸收电阻置于水冷散热器的基板上,配置风机加速输出电抗器的热交换效率,其他功率器件则自然散热。基于一体化模型对矿用变频器内部温度场特性、对流换热特性进行数值模拟分析,并搭建矿用变频器加载试验平台验证基于一体化模型的温度场仿真的正确性及散热设计的有效性。结果表明:① 在内部功率器件的传导、对流及辐射换热作用下,隔爆外壳的温度高于环境温度,最低为36 ℃,且后基板的温度高于其他隔爆面,最高可达70 ℃。矿用变频器内部组件均未超过80 ℃,远低于相关标准规定值,具有良好的散热性能。IGBT模块的温度最高,机心母排组件的温度次之,直流滤波电容组件的温度最低。② 充电过程中功率器件产生了较大的损耗,但由于充电时间极短,该损耗不会引起温度的剧烈变化,功率器件的瞬时温度最高不超过59 ℃;放电电阻的瞬时温度最高可达267 ℃,100 ℃以上的作用时间为200 s,梯形铝壳电阻的耐高温冲击能力可满足该应用场景,且未形成热应力循环,不会产生热击穿、热失效现象。③ 各功率器件在2~3 h后温度逐渐趋于稳定,各标定测温点的实验与仿真结果在整体趋势上保持较好的一致性。

     

  • 图  1  考虑等效电阻的矿用变频器主电路拓扑模型

    Figure  1.  Main circuit topology model of mine inverter considering equivalent resistance

    图  2  交流母排电磁场强度的分布云图

    Figure  2.  Distribution cloud map of electromagnetic field intensity of AC busbar

    图  3  交流母排等效电阻随频率变化曲线

    Figure  3.  Variation curves of equivalent resistance of AC busbar with frequency

    图  4  交流母排电流曲线

    Figure  4.  AC busbar current curves

    图  5  单只直流滤波电容的纹波电流

    Figure  5.  Ripple current of a single DC filter capacitor

    图  6  充/放电电阻功率损耗随时间变化曲线

    Figure  6.  Variation curve of charge/discharge resistor power loss with time

    图  7  IGBT模块开关特性曲线

    Figure  7.  IGBT module switching characteristic curves

    图  8  电流激励信号

    Figure  8.  Current excitation signal

    图  9  输出电抗器磁通密度峰值的分布云图

    Figure  9.  The distribution cloud map of the peak value of the magnetic flux density of the output reactor

    图  10  输出电抗器绕组损耗和铁心损耗随时间变化曲线

    Figure  10.  Curves of winding loss and core loss of output reactor with time

    图  11  不同条件下的IGBT模块最高结温

    Figure  11.  The highest junction temperature of IGBT module under different conditions

    图  12  不同进风方向时的输出电抗器温度场分布

    Figure  12.  Output reactor temperature distribution in different air inlet directions

    图  13  风机至输出电抗器表面距离与最高温度的关系曲线

    Figure  13.  Relationship curue between the distance from the fan to the output reactor surface and the maximum temperature

    图  14  风机至输出电抗器中心高度与最高温度的关系曲线

    Figure  14.  Relationship curue between the height from the fan to the center of the output reactor and the maximum temperature

    图  15  矿用变频器的的一体化模型

    Figure  15.  Integrated model of mine inverter

    图  16  矿用变频器隔爆外壳的温度场分布云图

    Figure  16.  Distribution cloud map of temperature field of explosion-proof enclosure of mine inverter

    图  17  矿用变频器隔爆内部组件温度场分布云图

    Figure  17.  Distribution cloud map of temperature field of explosion-proof internal components of mine inverter

    图  18  充电过程中功率器件温度随时间变化曲线

    Figure  18.  Change curve of power device temperature with time during charging

    图  19  放电电阻温度随时间变化曲线

    Figure  19.  The change curve of the discharge resistance temperature with time

    图  20  矿用变频器及其加载试验平台

    Figure  20.  Mine inverter and its loading test platform

    图  21  各标定测温点的温升曲线

    Figure  21.  The temperature rise curves of each calibration temperature measurement point

    图  22  实验与仿真结果对比

    Figure  22.  Comparison of experimental and simulation results

  • [1] 葛世荣. 煤矿智采工作面概念及系统架构研究[J]. 工矿自动化,2020,46(4):1-9.

    GE Shirong. Research on concept and system architecture of smart mining workface in coal mine[J]. Industry and Mine Automation,2020,46(4):1-9.
    [2] 朱永平,徐晓建. 浅谈矿用变频器发展趋势[J]. 工矿自动化,2017,43(10):18-23.

    ZHU Yongping,XU Xiaojian. Development trend of mine frequency converter[J]. Industry and Mine Automation,2017,43(10):18-23.
    [3] 史晗,蒋德智,荣相,等. 矿用变频器LRC滤波器寄生参数影响研究[J]. 工矿自动化,2020,46(8):44-50.

    SHI Han,JIANG Dezhi,RONG Xiang,et al. Research on influence of parasitic parameters of LRC filter for mine-used inverter[J]. Industry and Mine Automation,2020,46(8):44-50.
    [4] 杨伟林. 浅谈防爆变频器的散热设计[J]. 防爆电机,2019,54(1):36-39,42. doi: 10.3969/J.ISSN.1008-7281.2019.01.11

    YANG Weilin. Brief discussion on heat dissipation design of explosion-proof frequency inverter[J]. Explosion-Proof Electric Machine,2019,54(1):36-39,42. doi: 10.3969/J.ISSN.1008-7281.2019.01.11
    [5] 胡锐,陈权,胡存刚,等. 基于功率器件的3L−NPC逆变器失效机理研究[J]. 电力电子技术,2021,55(2):137-140.

    HU Rui,CHEN Quan,HU Cungang,et al. Study of the failure mechanism of 3L-NPC inverter based on power devices[J]. Power Electronics,2021,55(2):137-140.
    [6] 刘四军,韩威,张海星,等. 高压开关柜温度流体场仿真及散热优化研究[J]. 高压电器,2020,56(10):63-69.

    LIU Sijun,HAN Wei,ZHANG Haixing,et al. Research on temperature fluid field simulation and heat dissipation optimization of high voltage switchgear[J]. High Voltage Apparatus,2020,56(10):63-69.
    [7] 顾胜坚,尤飘飘,江友华. 非理想供电情况下的干式变压器热性能分析[J]. 变压器,2020,57(6):19-24.

    GU Shengjian,YOU Piaopiao,JIANG Youhua. Thermal performance analysis of dry-type transformer under condition of non-ideal power supply[J]. Transformer,2020,57(6):19-24.
    [8] 李金忠,张丹丹,徐征宇,等. 有限元法分析隔声装置对特高压并联电抗器散热性能的影响[J]. 高电压技术,2017,43(3):822-827.

    LI Jinzhong,ZHANG Dandan,XU Zhengyu,et al. Heat dissipation performance of ultra-high voltage shunt reactor with sound insulation based on finite element method[J]. High Voltage Engineering,2017,43(3):822-827.
    [9] 方杰,常桂钦,彭勇殿,等. 基于ANSYS的大功率IGBT模块传热性能分析[J]. 大功率变流技术,2012(2):16-20.

    FANG Jie,CHANG Guiqin,PENG Yongdian,et al. Thermal performance analysis of high-power IGBT module based on ANSYS[J]. High Power Converter Technology,2012(2):16-20.
    [10] 徐鹏程,陶汉中,张红. IGBT 热管式整体翅片散热器优化分析[J]. 制冷学报,2014,35(5):101-104,109. doi: 10.3969/j.issn.0253-4339.2014.05.018

    XU Pengcheng,TAO Hanzhong,ZHANG Hong. Optimization and analysis of IGBT heat pipe heat sink with integral fin[J]. Journal of Refrigeration,2014,35(5):101-104,109. doi: 10.3969/j.issn.0253-4339.2014.05.018
    [11] 丁杰,张平. 地铁车辆牵引逆变器热管散热器的温升试验及热仿真[J]. 中国铁道科学,2016,37(3):95-102. doi: 10.3969/j.issn.1001-4632.2016.03.014

    DING Jie,ZHANG Ping. Temperature rise test and thermal simulation of heat-pipe radiator of metro vehicel traction inverter[J]. China Railway Science,2016,37(3):95-102. doi: 10.3969/j.issn.1001-4632.2016.03.014
    [12] 母福生,王海军,江乐新,等. 用于地铁变流器的平板微热管散热器数值模拟与实验研究[J]. 制冷学报,2019,40(5):102-108. doi: 10.3969/j.issn.0253-4339.2019.05.102

    MU Fusheng,WANG Haijun,JIANG Lexin,et al. Numerical simulation and experimental study of flat microheat pipe radiator for metro converter[J]. Journal of Refrigeration,2019,40(5):102-108. doi: 10.3969/j.issn.0253-4339.2019.05.102
    [13] 苗盈灜. 矿用大功率隔爆变频器热设计开发[J]. 煤炭科学技术,2016,44(增刊1):102-105.

    MIAO Yingying. Thermal design and development of high power flame-proof inverter in coal mine[J]. Coal Science and Technology,2016,44(S1):102-105.
    [14] 尹玉兴,朱兆霞. 矿用隔爆型变频器水冷散热性能研究[J]. 煤矿机械,2015,36(8):83-85. doi: 10.13436/j.mkjx.201508034

    YIN Yuxing,ZHU Zhaoxia. Research of water cooling performance of mine flameproof frequency converter[J]. Coal Mine Machinery,2015,36(8):83-85. doi: 10.13436/j.mkjx.201508034
    [15] 王庆海. 煤矿提升机双PWM变频调速系统的研究[J]. 煤炭技术,2017,36(4):237-239.

    WANG Qinghai. Research on dual PWM frequency conversion speed regulation system for mine hoist[J]. Coal Technology,2017,36(4):237-239.
    [16] 纽春萍,陈德桂,刘颖异,等. 交流接触器温度场仿真及影响因素的分析[J]. 电工技术学报,2007(5):71-77.

    NIU Chunping,CHEN Degui,LIU Yingyi,et al. Temperature field simulation of AC contactor and analysis of its influence factors[J]. Transactions of China Electrotechnical Society,2007(5):71-77.
    [17] 肖继学,龚建全,董圣友,等. 电缆热路模型特征参数计算方法综述[J]. 西华大学学报(自然科学版),2015,34(5):39-42.

    XIAO Jixue,GONG Jianquan,DONG Shengyou,et al. Overview of calculation methods to characteristic parameters of the thermal circuit model for power cable[J]. Journal of Xihua University(Natural Science),2015,34(5):39-42.
    [18] 荣相,史晗,蒋德智,等. 一种矿用变频器滤波装置[J]. 工矿自动化,2020,46(5):76-81.

    RONG Xiang,SHI Han,JIANG Dezhi,et al. A mine-used frequency converter filter device[J]. Industry and Mine Automation,2020,46(5):76-81.
    [19] 刘鹏辉,苏梅英,李君,等. 基于高功率密度芯片应用的微流道散热研究[J]. 电力电子技术,2021,55(1):129-132. doi: 10.3969/j.issn.1000-100X.2021.01.034

    LIU Penghui,SU Meiying,LI Jun,et al. Research on microchannel heat dissipation based on high power density chip application[J]. Power Electronics,2021,55(1):129-132. doi: 10.3969/j.issn.1000-100X.2021.01.034
    [20] 伍毅,丁杰,徐景秋,等. 基于Icepak的机车牵引变流器热设计[J]. 电力机车与城轨车辆,2020,43(2):43-47,56.

    WU Yi,DING Jie,XU Jingqiu,et al. Thermal design of locomotive traction converter based on Icepak[J]. Electric Locomotives & Mass Transit Vehicles,2020,43(2):43-47,56.
    [21] 祝德春,王新春. 储能电池模组的风冷散热优化设计研究[J]. 电源技术,2022,46(5):523-527.

    ZHU Dechun,WANG Xinchun. Research on optimal design of air cooling and heat dissipation of energy storage battery module[J]. Chinese Journal of Power Sources,2022,46(5):523-527.
  • 加载中
图(22)
计量
  • 文章访问数:  187
  • HTML全文浏览量:  48
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-22
  • 修回日期:  2023-01-12
  • 网络出版日期:  2023-02-27

目录

    /

    返回文章
    返回