Bearing fault diagnosis based on harmonic matching compensation and keyless phase order tracking
-
摘要: 煤矿机械设备轴承在强冲击、大载荷工况下产生的振动信号表现出强烈的瞬态非平稳与局部非线性特性。经典的时域统计分析方法和全局域变换方法难以识别故障特征;传统阶次跟踪方法存在设备安装不便、难以获取瞬时频率的问题;传统的无键相阶次跟踪方法在转速波动剧烈的条件下估计出的瞬时频率精度低,导致故障识别效果差。针对上述问题,提出了一种基于谐波匹配补偿和无键相阶次跟踪的轴承故障诊断方法。首先,利用基于谐波匹配补偿的时频分析方法对轴承振动信号进行处理,准确估计瞬时频率;其次,通过Vold-Kalman滤波方法自适应提取谐波分量信号;再次,采用Hilbert变换计算谐波的瞬时相位,进而获得时间域与角度域的映射关系,完成原始时间域信号在角度域的重采样;最后,对重采样的信号进行快速傅里叶变换,通过分析包络阶次谱,实现轴承故障特征识别。仿真和试验结果表明,该方法估计的瞬时频率与实际值之间的最大相对误差不超过1%,表征轴承故障特征阶次准确且明显,可有效诊断轴承故障。Abstract: The vibration signals of the bearings of coal mine machanical equipment under the working conditions of strong impact and heavy load show strong transient non-stationary and local nonlinear features. It is difficult to identify the fault features by the classical time-domain statistical analysis method and the global domain transformation method. The traditional order tracking method has the problems of inconvenient equipment installation and difficulty in obtaining instantaneous frequency. The traditional keyless phase order tracking method estimates the instantaneous frequency with low precision under the condition of severe speed fluctuation. This leads to poor fault identification effect. To solve these problems, a new method of bearing fault diagnosis based on harmonic matching compensation and keyless phase order tracking is proposed. Firstly, the time-frequency analysis method based on harmonic matching compensation is used to process the bearing vibration signal and estimate the instantaneous frequency accurately. Secondly, the Vold-Kalman filtering method is used to adaptively extract the harmonic component signal. Thirdly, the Hilbert transform is used to calculate the instantaneous phase of the harmonic. The mapping relationship between the time domain and angle domain is obtained, so as to complete the resampling of the original time domain signal in the angle domain. Finally, the resampled signals are processed by fast Fourier transform (FFT). The fault features of the bearing are identified by analyzing the envelope order spectrum. The simulation and experimental results show that the maximum relative error between the estimated instantaneous frequency and the actual value is less than 1%. The feature order of bearing fault is accurate and obvious, which can effectively diagnose the bearing fault.
-
表 1 轴承几何参数
Table 1. Bearing geometry parameters
滚动体直径/mm 节圆半径/mm 接触角/(°) 滚动体个数 6 25 15 8 -
[1] 宫涛,杨建华,单振,等. 强噪声背景与变转速工况条件下滚动轴承故障诊断研究[J]. 工矿自动化,2021,47(7):63-71.GONG Tao,YANG Jianhua,SHAN Zhen,et al. Research on rolling bearing fault diagnosis under strong noise background and variable speed working condition[J]. Industry and Mine Automation,2021,47(7):63-71. [2] 徐青青,赵海芳,李守军. 一种煤矿机械轴承故障诊断方法[J]. 工矿自动化,2019,45(10):80-85,90.XU Qingqing,ZHAO Haifang,LI Shoujun. A fault diagnosis method for coal mine machinery bearing[J]. Industry and Mine Automation,2019,45(10):80-85,90. [3] 黄海阳,王成,李海波,等. 基于滑动窗变步长等变自适应源分离的线性慢时变结构工作模态参数识别[J]. 计算机集成制造系统,2021,27(1):182-191.HUANG Haiyang,WANG Cheng,LI Haibo,et al. Moving window variable step-size EASI based operational modal parameter identification for slow linear time-varying structure[J]. Computer Integrated Manufacturing Systems,2021,27(1):182-191. [4] 石博强, 申焱华. 矿用设备时变不确定性分析与寿命预测[M]. 北京: 冶金工业出版社, 2015.SHI Boqiang, SHEN Yanhua. Time-varying uncertainty analysis and life prediction of mining equipment[M]. Beijing: Metallurgical Industry Press, 2015. [5] WANG K S,HEYNS P S. An empirical re-sampling method on intrinsic mode function to deal with speed variation in machine fault diagnostics[J]. Applied Soft Computing,2011,11(8):5015-5027. doi: 10.1016/j.asoc.2011.05.056 [6] 吴康福. 基于同步提取变换与阶比分析的轴承变转速故障诊断[J]. 组合机床与自动化加工技术,2021(4):14-18.WU Kangfu. Fault diagnosis of bearing in variable speed based on synchronous extraction transformation and order analysis[J]. Modular Machine Tool & Automatic Manufacturing Technique,2021(4):14-18. [7] 庾天翼,李舜酩,龚思琪. 基于时频脊线和阶次分析的转子故障诊断[J]. 航空发动机,2022,48(1):40-46.YU Tianyi,LI Shunming,GONG Siqi. Rotor fault diagnosis based on time-frequency ridge and order analysis[J]. Aeroengine,2022,48(1):40-46. [8] 郭瑜,秦树人,汤宝平,等. 基于瞬时频率估计的旋转机械阶比跟踪[J]. 机械工程学报,2003,39(3):32-36. doi: 10.3901/JME.2003.03.032GUO Yu,QIN Shuren,TANG Baoping,et al. Order tracking of rotating machinery based on instantaneous frequency estimation[J]. Chinese Journal of Mechanical Engineering,2003,39(3):32-36. doi: 10.3901/JME.2003.03.032 [9] GUO Y,CHI Y L,HUANG Y Y,et al. Robust IFE based order analysis of rotating machinery in virtual instrument[J]. Journal of Physics:Conference Series,2006,48(1):647-652. [10] 陈昊,张永祥,黄包裕. 基于阶次跟踪的变转速工况轴承故障诊断方法[J]. 轴承,2021(12):49-55.CHEN Hao,ZHANG Yongxiang,HUANG Baoyu. Fault diagnosis method for bearings under variable speed conditions based on order tracking method[J]. Bearing,2021(12):49-55. [11] 曾陆洋,延九磊,刘峰,等. 一种针对无键相铁道车辆的旋转部件阶次跟踪方法[J]. 铁道机车车辆,2022,42(2):111-115.ZENG Luyang,YAN Jiulei,LIU Feng,et al. Order tracking method for rotating parts of non-keyphase railway vehicles[J]. Railway Locomotive & Car,2022,42(2):111-115. [12] ZHAO Ming,LI Jing,WANG Xiufeng,et al. A tacho-less order tracking technique for large speed variations[J]. Mechanical Systems and Signal Processing,2013,40(1):76-90. doi: 10.1016/j.ymssp.2013.03.024 [13] CHANG Yonggen,FAN Jiang,ZHU Zhencai,et al. Fault diagnosis of rotating machinery based on time-frequency decomposition and envelope spectrum analysis[J]. Journal of Vibroengineering,2017,19(2):943-954. doi: 10.21595/jve.2017.17232 [14] ZHENG Zhi,JIANG Wanlu,WANG Zhenwei,et al. Gear fault diagnosis method based on local mean decomposition and generalized morphological fractal dimensions[J]. Mechanism & Machine Theory,2015,9:151-167. [15] WANG Tianyang,LIANG Ming,LI Jianyong,et al. Rolling element bearing fault diagnosis via fault characteristic order (FCO) analysis[J]. Mechanical Systems & Signal Processing,2014,45(1):139-153. [16] PAN M C,LIN Y F. Further exploration of Vold-Kalman-filtering order tracking with shaft-speed information-II:engineering applications[J]. Mechanical Systems and Signal Processing,2006,20(6):1410-1428. doi: 10.1016/j.ymssp.2005.01.007 [17] 张杰,史治宇,赵宗爽. 基于线调频自适应分解的时变系统瞬时模态参数识别[J]. 振动与冲击,2020,39(22):103-109,118.ZHANG Jie,SHI Zhiyu,ZHAO Zongshuang. Instantaneous modal parameter identification of time-varying systems based on adaptive chirplet decomposition[J]. Journal of Vibration and Shock,2020,39(22):103-109,118. [18] ZHAO Ming,LIN Jing,XU Xiaoqiang,et al. Tacholess envelope order analysis and its application to fault detection of rolling element bearings with varying speeds[J]. Sensors,2013,13(8):10856-10875. doi: 10.3390/s130810856 [19] BORGHESANI P,RICCI R,CHATTERTON S,et al. A new procedure for using envelope analysis for rolling element bearing diagnostics in variable operating conditions[J]. Mechanical Systems and Signal Processing,2013,38(1):23-35. doi: 10.1016/j.ymssp.2012.09.014 [20] WU Jie,ZI Yanyang,CHEN Jinglong,et al. A modified tacho-less order tracking method for the surveillance and diagnosis of machine under sharp speed variation[J]. Mechanism and Machine Theory,2018,128:508-527. doi: 10.1016/j.mechmachtheory.2018.06.016 [21] 顾佶智,师蔚,胡定玉,等. 强背景噪声下基于谱峭度-波束形成轴承故障特征提取[J]. 噪声与振动控制,2022,42(3):110-115.GU Jizhi,SHI Wei,HU Dingyu,et al. Bearing fault feature extraction based on spectral kurtosis beamforming under strong noise background[J]. Noise and Vibration Control,2022,42(3):110-115.