Research on cross interference and evaluation method of coal mine gas detection equipment
-
摘要: 目前煤矿井下气体检测设备常因交叉干扰造成误报警甚至不报警,存在安全隐患,且现行国家或行业标准并未对气体交叉干扰提出明确的评判方法。针对上述问题,结合煤矿井下实际的环境气体类型和体积分数阈值情况,采用理论分析和试验验证相结合的方法研究了基于催化燃烧、激光和电化学3种常用原理的气体检测设备的交叉干扰机理和交叉干扰特性,设计并进行了交叉干扰试验。结合现行标准中气体检测设备误差试验通用方法,提出了基于煤矿井下特殊气体环境的气体检测设备交叉干扰评判方法:采用试验方法对气体检测设备交叉干扰特性进行评估,通入交叉干扰气样,计算气体检测设备的交叉干扰值,并与设备最高精度比较,从而判断非目标气体是否对气体检测设备造成交叉干扰影响。试验结果表明:气体检测设备交叉干扰影响普遍存在,在煤矿井下特定气体环境条件下,基于催化燃烧原理的甲烷检测设备易受硫化物和氢气干扰,应避免长时间在含有硫化氢或二氧化硫的气体环境中使用,以免造成催化剂中毒或抑制,影响测量精度;基于激光原理的甲烷和乙炔检测设备基本不受煤矿井下常见气体干扰,可以不进行交叉干扰试验,基于激光原理的乙烯检测设备易受甲烷气体的影响,经交叉干扰评判合格的,可以在甲烷环境中使用,不合格的应明确产品不能在含有甲烷的环境中使用;基于电化学原理的气体检测设备的交叉干扰特性具有不确定性,需经交叉干扰评判后,明确其可以和不可以使用的交叉干扰气体环境。Abstract: At present, coal mine underground gas detection equipment often causes false alarms or fails to alarm due to cross interference. There are potential safety hazards. There is no clear evaluation method for gas cross interference in current national or industry standards. In view of the above problems, combining with the actual underground environment gas type and volume fraction threshold in coal mines, the cross interference mechanism and characteristics of gas detection equipment based on the three commonly used principles of catalytic combustion, laser and electrochemistry are researched by using a combination method of theoretical analysis and experimental verification. The cross interference tests are designed and conducted. Combining with the common methods of gas detection equipment error testing in current standards, a gas detection equipment cross interference evaluation method based on the special gas environment in coal mines is proposed. The cross interference characteristics of the gas detection equipment are evaluated using the test method. By introducing cross interference gas samples, the cross interference value of the gas detection equipment is calculated. The value is compared with the highest precision of the equipment so as to determine if the non-target gas has a cross interference impact on the gas detection equipment. The test results show that cross interference of gas detection equipment is widespread. The methane detection equipment based on the catalytic combustion principle is easy to be interfered by sulfide and hydrogen under the specific gas environment conditions in the coal mine. Therefore, methane detection equipment should be avoided to be used in the gas environment containing hydrogen sulfide or sulfur dioxide for a long time. It will avoid poisoning or inhibiting the catalyst and affecting the measurement precision. Gas detection equipment based on the laser principle for detecting methane and acetylene is generally not affected by interference from common gases in coal mines and does not require cross interference testing. However, gas detection equipment based on the laser principle for detecting ethylene is affected by interference from methane gas. If it passes the cross interference evaluation, it can be used in a methane environment. If it fails, it should be clearly stated that the product cannot be used in environments containing methane. The cross interference characteristics of gas detection equipment based on the electrochemical principle are uncertain. It is necessary to determine the cross interference gas environment that can and cannot be used after the cross interference evaluation.
-
表 1 气体检测设备类型和体积分数阈值
Table 1. Type and volume fraction threshold of gas detection equipment
序号 气体类型 体积分数阈值 1 甲烷 100% 2 乙烯、乙炔、硫化氢、二氧化硫 100×10−6 3 一氧化碳 1000×10−6 4 氧气 25% 5 二氧化碳 5% 6 氧化氮 500×10−6 7 氢气 0.5% 8 氨气 200×10−6 表 2 煤矿井下常见可燃气体高位热值
Table 2. High calorific value of common combustible gases in coal mine
序号 气体类型 高位热值/
(kcal·Nm−3)序号 气体类型 高位热值/
(kcal·Nm−3)1 甲烷 9510 4 氨气 3862 2 一氧化碳 3018 5 乙烯 15142 3 氢气 3044 6 乙炔 13493 表 3 常见气体激光特征吸收峰和有效吸收峰宽度
Table 3. Characteristic absorption peaks and effective absorption peak width of common gas laser
序号 气体类型 吸收峰/nm 有效吸收峰宽度/nm 1 甲烷 1 653.72 约0.1 2 乙炔 1 529.18 约0.1 3 乙烯 1 625.00 约0.1 表 4 一氧化碳对催化甲烷传感器的交叉干扰试验数据
Table 4. Cross interference test data of carbon monoxide on catalytic methane sensor
一氧化碳
体积分数/10−6199.6 400.2 598.8 798.7 998.9 催化甲烷传感器
显示值/%0 0.01 0 0.01 0.01 表 5 氢气对催化甲烷传感器的交叉干扰试验数据
Table 5. Cross interference test data of hydrogen on catalytic methane sensor
氢气体积分数/% 0.0996 0.198 0 0.344 0 0.412 0 0.495 0 催化甲烷传感器
显示值/%0 0.20 0.38 0.43 0.51 表 6 甲烷对激光乙烯传感器的交叉干扰试验数据
Table 6. Cross interference test data of methane on laser ethylene sensor
甲烷体积分数/% 1.01 2.00 2.97 4.00 5.03 5.98 激光乙烯传感器显示值/10−6 29.3 70.1 104.8 138.8 174.8 200.0 表 7 氢气对电化学一氧化碳测定器的交叉干扰试验数据
Table 7. Cross interference test data of hydrogen on electrochemical carbon monoxide detector
氢气体积分数/10−6 200.3 402.0 601.1 795.7 996.2 A型电化学一氧化碳测定器显示值/10−6 47.9 97.6 165.0 202.4 226.5 B型电化学一氧化碳测定器显示值/10−6 0 0 0.1 0 0.1 表 8 试验用气样
Table 8. Test gas samples
序号 气样类别 所需气样体积分数/% 1 甲烷 20%$\varphi _{\max } $ 40%$\varphi _{\max } $ 60%$\varphi _{\max } $ 80%$\varphi _{\max } $ $\varphi _{\max } $@100 2 氧气 20%$\varphi _{\max } $ 40%$\varphi _{\max } $ 60%$\varphi _{\max } $ 80%$\varphi _{\max } $ $\varphi _{\max } $@25 3 一氧化碳 20%$\varphi _{\max } $ 40%$\varphi _{\max } $ 60%$\varphi _{\max } $ 80%$\varphi _{\max } $ $\varphi _{\max } $@0.1 4 二氧化碳 20%$\varphi _{\max } $ 40%$\varphi _{\max } $ 60%$\varphi _{\max } $ 80%$\varphi _{\max } $ $\varphi _{\max } $@5 5 氧化氮 20%$\varphi _{\max } $ 40%$\varphi _{\max } $ 60%$\varphi _{\max } $ 80%$\varphi _{\max } $ $\varphi _{\max } $@0.05 6 二氧化硫 20%$\varphi _{\max } $ 40%$\varphi _{\max } $ 60%$\varphi _{\max } $ 80%$\varphi _{\max } $ $\varphi _{\max } $@0.01 7 硫化氢 20%$\varphi _{\max } $ 40%$\varphi _{\max } $ 60%$\varphi _{\max } $ 80%$\varphi _{\max } $ $\varphi _{\max } $@0.01 8 氨气 20%$\varphi _{\max } $ 40%$\varphi _{\max } $ 60%$\varphi _{\max } $ 80%$\varphi _{\max } $ $\varphi _{\max } $@0.02 9 氢气 20%$\varphi _{\max } $ 40%$\varphi _{\max } $ 60%$\varphi _{\max } $ 80%$\varphi _{\max } $ $\varphi _{\max } $@0.5 10 乙烯 20%$\varphi _{\max } $ 40%$\varphi _{\max } $ 60%$\varphi _{\max } $ 80%$\varphi _{\max } $ $\varphi _{\max } $@0.01 11 乙炔 20%$\varphi _{\max } $ 40%$\varphi _{\max } $ 60%$\varphi _{\max } $ 80%$\varphi _{\max } $ $\varphi _{\max } $@0.01 -
[1] 国家安全生产监督管理总局. 煤矿安全规程(2022)[M]. 北京: 应急管理出版社, 2022.State Administration of Work Safety. Coal mine safety regulations(2022)[M]. Beijing: Emergency Management Press, 2022. [2] 陈永冉. 《煤矿安全规程》实施情况后评估与讨论[J]. 煤炭工程,2021,53(1):19-22.CHEN Yongran. Post-evaluation and discussion on the implementation of Coal mine safety regulations[J]. Coal Engineering,2021,53(1):19-22. [3] 陈硕鹏,陈艺童. 煤矿安全监控系统抗干扰问题[J]. 煤矿安全,2021,52(5):131-133.CHEN Shuopeng,CHEN Yitong. Anti-interference of coal mine safety monitoring system[J]. Safety in Coal Mines,2021,52(5):131-133. [4] 苗飞飞,毛东森,郭晓明,等. 甲烷催化燃烧催化剂的研究进展[J]. 应用技术学报,2019,19(3):242-248. doi: 10.3969/j.issn.2096-3424.2019.03.006MIAO Feifei,MAO Dongsen,GUO Xiaoming,et al. Research advances in catalysts for methane catalytic combustion[J]. Journal of Technology,2019,19(3):242-248. doi: 10.3969/j.issn.2096-3424.2019.03.006 [5] 耿俊,柯权力,周文茜,等. 催化燃烧催化剂抗硫性的研究进展[J]. 燃料化学学报,2022,50(5):564-575. doi: 10.1016/S1872-5813(21)60182-2GENG Jun,KE Quanli,ZHOU Wenxi,et al. Research progress in the sulfur resistance of catalytic combustion catalysts[J]. Journal of Fuel Chemistry and Technology,2022,50(5):564-575. doi: 10.1016/S1872-5813(21)60182-2 [6] 李洋洋. 金属氧化物及负载钯基催化剂上CO催化转化的谱学研究[D]. 厦门: 厦门大学, 2019.LI Yangyang. Spectroscopic studies of metal oxide and supported palladium based catalysts for CO catalytic conversion[D]. Xiamen: Xiamen University, 2019. [7] 宋鑫. 钯基催化剂上氢气和氧气直接合成双氧水反应机理的理论研究[D]. 秦皇岛: 燕山大学, 2020.SONG Xin. The theoretical study of reaction mechanism for direct synthesis of H2O2 from H2 and O2 on palladium based catalysts[D]. Qinhuangdao: Yanshan University, 2020. [8] 赵成龙,黄丹飞,刘智颖,等. 开放型TDLAS−WMS技术CO2痕量气体检测[J]. 光子学报,2022,51(2):333-342.ZHAO Chenglong,HUANG Danfei,LIU Zhiying,et al. Measurement of trace CO2 concentration with open-path TDLAS-WMS technology[J]. Acta Photonica Sinica,2022,51(2):333-342. [9] 王国水,郭奥,刘晓楠,等. TDLAS气体检测系统仿真与影响因素分析[J]. 光谱学与光谱分析,2021,41(10):3262-3268.WANG Guoshui,GUO Ao,LIU Xiaonan,et al. Simulation and influencing factors analysis of gas detection system based on TDLAS technology[J]. Spectroscopy and Spectral Analysis,2021,41(10):3262-3268. [10] 张汉辉. 波谱学原理及应用[M]. 北京: 化学工业出版社, 2011.ZHANG Hanhui. Principle and application of spectroscopy[M]. Beijing: Chemical Industry Press, 2011. [11] 王小松. 矿用激光甲烷传感器工作稳定性加速试验[J]. 工矿自动化,2019,45(12):45-49. doi: 10.13272/j.issn.1671-251x.2018100034WANG Xiaosong. Accelerated test of working stability of mine-used laser methane sensor[J]. Industry and Mine Automation,2019,45(12):45-49. doi: 10.13272/j.issn.1671-251x.2018100034 [12] 高彦伟,张玉钧,陈东,等. 基于可调谐半导体激光吸收光谱的氧气浓度测量研究[J]. 光学学报,2016,36(3):275-281.GAO Yanwei,ZHANG Yujun,CHEN Dong,et al. Measurement of oxygen concentration using tunable diode laser absorption spectroscopy[J]. Acta Optica Sinica,2016,36(3):275-281. [13] 信丰鑫,郭金家,李杰,等. 可调谐半导体激光吸收光谱技术对CO2浓度的测量研究[J]. 中国海洋大学学报(自然科学版),2020,50(8):137-142.XIN fengxin,GUO Jinjia,LI Jie,et al. Measurement of CO2 concentration by tunable diode laser absorption spectroscopy[J]. Periodical of Ocean University of China(Natural Science Edition),2020,50(8):137-142. [14] 冯仕凌. 基于新型多光程吸收池的痕量气体激光传感器的设计及应用[D].太原: 太原科技大学,2021.FENG Shiling. Design and application of trace gas laser-based sensor using a novel multi-pass absorption cell[D]. Taiyuan: Taiyuan University of Science and Technology, 2021. [15] 孙明晨,吴小成,宫晓艳,等. 基于三维射线追踪和HITRAN数据库的透过率仿真计算[J]. 光谱学与光谱分析,2020,40(7):2092-2097.SUN Mingchen,WU Xiaocheng,GONG Xiaoyan,et al. Transmittance simulation calculation based on 3D ray tracing and HITRAN database[J]. Spectroscopy and Spectral Analysis,2020,40(7):2092-2097. [16] 崔洪鲁,闫召爱,张炳炎,等. 基于HITRAN数据库的大气激光雷达信号仿真[J]. 空间科学学报,2020,40(6):1046-1051. doi: 10.11728/cjss2020.06.1046CUI Honglu,YAN Zhao'ai,ZHANG Bingyan,et al. Research on atmospheric lidar signal simulation based on HITRAN database[J]. Chinese Journal of Space Science,2020,40(6):1046-1051. doi: 10.11728/cjss2020.06.1046 [17] 魏玉宾. 光纤气体传感器及其在安全工程应用中的关键技术研究[D]. 济南: 山东大学, 2016.WEI Yubin. Research on key technologies of optical fiber gas sensor and its application in safety engineering[D]. Jinan: Shandong University, 2016. [18] 海涛,杨永超,演明,等. 恒电位电解型电化学气体传感器研究[J]. 传感器与微系统,2020,39(9):63-65. doi: 10.13873/J.1000-9787(2020)09-0063-03HAI Tao,YANG Yongchao,YAN Ming,et al. Research of constant potential electrolysis-type electrochemical gas sensor[J]. Transducer and Microsystem Technologies,2020,39(9):63-65. doi: 10.13873/J.1000-9787(2020)09-0063-03 [19] 王晓波,雷远进,申梅桂,等. 电化学CO2气体传感器的制备及评价[J]. 传感技术学报,2018,31(10):1467-1471. doi: 10.3969/j.issn.1004-1699.2018.010.002WANG Xiaobo,LEI Yuanjin,SHEN Meigui,et al. A study on preparation and evaluation of electrochemical CO2 gas sensors[J]. Chinese Journal of Sensors and Actuators,2018,31(10):1467-1471. doi: 10.3969/j.issn.1004-1699.2018.010.002 [20] 王海波. 低功耗一氧化碳传感器研究进展[J]. 工矿自动化,2021,47(7):72-78. doi: 10.13272/j.issn.1671-251x.17755WANG Haibo. Research progress of low-power carbon monoxide sensors[J]. Industry and Mine Automation,2021,47(7):72-78. doi: 10.13272/j.issn.1671-251x.17755 [21] 王洋洋,秦浩,杨永超,等. 电化学多组分气体传感器设计与性能分析[J]. 传感器与微系统,2018,37(11):87-89.WANG Yangyang,QIN Hao,YANG Yongchao,et al. Design and performance analysis of electrochemical multi-component gas sensor[J]. Transducer and Microsystem Technologies,2018,37(11):87-89.