Research on 5G frequency band selection and antenna optimization setting in coal mine
-
摘要: 矿井无线通信和矿用5G移动通信技术是煤矿智能化关键技术之一。为提高煤矿井下无线传输距离、绕射能力及无线通信系统的稳定性和可靠性,减少基站用量、组网成本和维护工作量,研究了矿用5G工作频段和基站天线位置对无线传输损耗和传输距离的影响。主要结论如下:① 煤矿井下无线发射功率受本质安全防爆限制,接收灵敏度受电磁噪声限制,天线增益受本质安全防爆和巷道空间限制。在煤矿井下无线发射功率、接收灵敏度、天线增益受限的情况下,应通过优选无线工作频段和优化天线设置位置,提高矿井无线传输距离和绕射能力,提高系统稳定性和可靠性,减少基站用量、组网成本和维护工作量。② 矿用5G工作频段应优选700 MHz。煤矿井下700 MHz频段与现有5G其他工作频段2.6,3.5,4.9 GHz相比,具有无线传输损耗小、无线传输距离远、绕射能力强、基站用量少、组网成本低和维护工作量小等优点。③ 提出的传输损耗/位置变化率分析方法便于分析巷道横向不同区域位置变化引起的无线传输损耗变化情况。④ 无线基站天线应靠近巷帮设置,距巷帮不小于0.01 m,垂向位于巷道高度约2/5处。这样既不影响行人和行车、便于安装维护,也可以满足无线传输损耗较小、无线传输距离较远的要求。⑤ 矿用手机、人员定位卡、便携式无线甲烷检测报警仪、多功能无线矿灯、便携式无线摄像机、便携式无线仪器设备、可穿戴无线设备、车辆定位卡、车载无线设备、无线摄像机、无线传感器、物联网设备等无线终端,在不影响使用的条件下应尽量靠近巷道中心,以提高无线传输距离。Abstract: Mine wireless communication and mine-used 5G mobile communication technology is one of the key technologies of coal mine intelligence.In order to improve wireless transmission distance and diffraction ability as well as stability and reliability of wireless communication system in underground coal mine, reduce base station consumption, networking cost and maintenance workload, the effect of mine-used 5G working frequency band and antenna position of base stations on wireless transmission loss and transmission distance is studied.The major conclusions are as follows: ① Wireless transmitting power in underground coal mine is limited by intrinsically safe explosion-proof, receiving sensitivity is limited by electromagnetic noise, and antenna gain is limited by intrinsically safe explosion-proof and tunnel space.Therefore, under the conditions of limited wireless transmitting power, receiving sensitivity and antenna gain in coal mine, it is necessary to increase wireless transmission distance and diffraction ability, improve stability and reliability of wireless communication system, and reduce base station consumption, networking cost and maintenance workload by optimizing wireless working frequency band and antenna location setting.② 700 MHz is recommended as mine-used 5G working frequency band. Compared with other 5G frequency bands such as 2.6 GHz, 3.5 GHz and 4.9 GHz, 700 MHz frequency band in underground coal mine has the advantages of low wireless transmission loss, long wireless transmission distance, strong diffraction ability, less base station consumption, low networking cost and maintenance workload and so on.③ Analysis method of transmission loss/position change rate is put forward, which is convenient to analyze the change of transmission loss caused by position change in different transversal areas of tunnel.④ The antennas of wireless base stations should be set close to tunnel side, not less than 0.01 m away from tunnel side, and the height of antennas should be about 2/5 of tunnel height.This is convenient for installation and maintenance, not only does not affect pedestrians and driving but also can satisfy the requirements of low transmission loss and long transmission distance. ⑤ In order to improve wireless transmission distance, wireless terminals used in underground coal mine, such as mobile phones, personnel positioning cards, portable wireless methane detection alarms, multi-functional wireless lamps, portable wireless cameras, portable wireless instruments and equipments, wearable wireless devices, vehicle positioning cards, vehicle wireless devices, wireless cameras, wireless sensors, Internet of things devices and so on, should be closer to the tunnel center as much as possible under the condition of not affecting normal use.
-
Key words:
- coal mine intelligence /
- mine wireless communication /
- 5G /
- wireless frequency band /
- antenna locatio
点击查看大图
计量
- 文章访问数: 253
- HTML全文浏览量: 22
- PDF下载量: 60
- 被引次数: 0