石门揭煤是我国煤矿井下重要的巷道掘进工程之一。石门揭煤时煤与瓦斯突出强度大,且80%以上的特大型煤与瓦斯突出均发生在石门揭煤过程,对煤矿造成严重破坏[1-2]。根据煤与瓦斯突出机理,煤体的力学强度是决定石门揭煤时能否抵挡煤与瓦斯突出动力的主要因素[3-4]。因此,为降低石门揭煤过程中煤与瓦斯突出危险性,结合人工冻结技术,国内外学者提出低温冻结石门揭煤方法[5-6]。在低温冻结作用下,煤体内部孔隙、裂隙中的水冻结成冰,冰的胶结作用可增强煤体的黏聚力,从而提高煤体的力学强度,使煤体状态更加稳定[7]。叶青等[8]提出了采用注液冻结技术增强石门揭煤煤体的强度、增加集中应力区和卸压区的长度来防止煤体发生流变而导致煤与瓦斯延时突出;冯涛等[9-10]通过冻结成型煤样力学实验论证了注液冻结法作为石门揭煤防突方法的可行性;谢雄刚等[11-12]采用RFPA2D系统和ANSYS数值模拟软件,分别建立了石门揭煤冻结煤层过程气固耦合数学模型及温度场数值模拟计算模型;翟成等[13]探究了低温冻结石门揭煤过程中煤体未冻水含量的变化规律。笔者通过试验研究了低温冻结石门揭煤煤体温度及力学性能变化规律,对低温冻结石门揭煤方法的工程实践具有一定的指导作用。
试验采用型煤代替原煤,将煤粉、水泥、石膏、黄沙按配比1∶2∶2∶1混合并加入适量的水搅拌均匀后倒入立方体模具,待浆液成型后进行脱模,制作5个100 mm×100 mm×100 mm的煤样。由于铜的导热性能良好,热传导速率快,所以使用U形铜管作为导热介质,使液氮从U形铜管一端注入,液氮通过U形铜管有效吸收煤样中的热量,汽化产生的氮气从U形铜管另一端排出。4个煤样预埋U形铜管,煤样通过U形铜管持续向液氮放出热量,从而使煤样逐渐被冻结;1个煤样不预埋U形铜管作为对比试验组。通过真空加压饱水装置、电热鼓风干燥箱和电子天平控制煤样含水率为7%~9%[14-16],以便对煤样进行冻结。
(1) 将4个预埋U形铜管煤样的U形铜管与液氮罐通过管阀相连,拧开液氮罐阀门对U形铜管注入液氮使煤样分别冻结15,30,45,60 min。在U形铜管垂直平分线上距煤样边缘1/4处插入热电偶,再将热电偶与温度传感器相连,通过温度传感器测量煤样内部温度。液氮温度为-196 ℃,与煤样的温度差远大于煤样与周围环境之间的温度差,因此热交换主要发生在液氮与煤样之间,且注液氮冻结前在煤壁贴上保温棉,煤样与周围环境的热交换可忽略不计。
(2) 用红外热成像仪测量未预埋U形铜管煤样及冻结后煤样的表面温度。
(3) 在煤样侧面沿横向、纵向贴上应变片,将应变片与应变仪相连,在MTS电液伺服万能试验机上进行单轴压缩试验(设轴向位移速率为0.1 mm/min),测量煤样单轴压缩过程产生的应力应变。
试验过程如图1所示。
图1 试验过程
Fig.1 Experiment process
不同冻结时间下煤样内部温度变化曲线如图2所示,结果见表1。
(a) 冻结15 min
(b) 冻结30 min
(c) 冻结45 min
(d) 冻结60 min
图2 不同冻结时间下煤样内部温度变化曲线
Fig.2 Internal temperature variation curves of coal samples under different freezing time
表1 不同冻结时间下煤样内部温度
Table 1 Internal temperature of coal samples under different freezing time
冻结时间/min起始温度/℃冻结后温度/℃温度降低量/℃1526.7412.2114.533026.474.6321.844525.89-4.4330.326025.33-34.9560.28
可看出冻结过程中煤样内部温度持续降低,即冻结时间越长,煤样内部温度降低量越大;冻结60 min时,煤样内部温度由25.33 ℃降低到-34.95 ℃,温度降低量达60.28 ℃,冻结效果较好。
不同冻结时间下煤样表面温度变化云图如图3所示。从图3可看出:① 原始煤样表面几何中心温度为23.45 ℃,冻结15,30,45,60 min后,表面几何中心温度依次为10.28,10.07,5.38,-7.30 ℃;原始煤样表面最低温度为22.02 ℃,冻结15,30,45,60 min后,表面最低温度依次为8.01,7.71,4.11,-10.10 ℃;原始煤样表面最高温度为24.16 ℃,冻结15,30,45,60 min后,表面最高温度依次为16.53, 14.31,16.86,8.42 ℃;原始煤样表面平均温度为23.36 ℃,冻结15,30,45,60 min后,表面平均温度依次为12.05,10.92,8.60,-1.67 ℃。这表明随着冻结时间的增加,煤样表面几何中心温度、表面最低温度、表面最高温度和表面平均温度均呈下降趋势。② 煤样表面最低温度位于U形铜管附近,煤样表面最高温度位于煤样边界。这是由于液氮与煤样内部的热交换以U形铜管为中心逐渐向四周扩散,U形铜管附近煤的热量最先被液氮吸收,处于煤样边界煤的热量最后被液氮吸收。
(a) 未冻结
(b) 冻结15 min
(c) 冻结30 min
(d) 冻结45 min
(e) 冻结60 min
图3 不同冻结时间下煤样表面温度变化云图
Fig.3 Surface temperature variation nephogram of coal samples under different freezing time
2.2 煤样力学性能变化
不同冻结时间下煤样应力-应变曲线如图4所示,煤体在整个单轴压缩过程中依次经历压密、弹性变形、屈服和破坏4个阶段[17-18]。从图4可看出,压密阶段随着冻结时间的增加而缩短,未进行冻结的煤样在压密阶段应变达1.655 4%,冻结15,30,45,60 min的煤样在压密阶段应变分别降到了0.932 8%, 0.388 0%,0.170 8%,0.271 6%,这是由于冻结作用使煤孔隙中的水凝固成冰,压密阶段应变减小;在弹性变形阶段和屈服阶段,煤样的最大应力随着冻结时间的增加而增大,这是由于煤样内部的水冻结成冰,冰对煤样内部基质颗粒的胶结作用和孔隙的充填作用明显,并且冻结时间越长,煤样冻结程度越高,提高了煤样的力学强度。
图4 不同冻结时间下煤样应力-应变曲线
Fig.4 Stress-strain curves of coal samples under different freezing time
不同冻结时间下煤样最大应力和弹性模量见表2,并采用多项式拟合方式绘制曲线,如图5所示。可看出随着冻结时间的增加,煤样的最大应力和弹性模量均呈增大趋势;冻结60 min后,最大应力由2.074 MPa增大到4.252 MPa,增幅为105%,弹性模量由0.403 GPa增大到0.621 GPa,增幅为54.1%。
表2 不同冻结时间下煤样最大应力和弹性模量
Table 2 Maximum stress and elastic modulus of coal samples under different freezing time
冻结时间/min最大应力/MPa最大应力增幅/%弹性模量/GPa弹性模量增幅/%02.074—0.403—152.51921.50.47517.9302.91140.40.48420.1453.47067.40.53833.5604.252105.00.62154.1
图5 不同冻结时间下煤样最大应力和弹性模量变化曲线
Fig.5 Variation curves of maximum stress and elastic modulus of coal samples under different freezing time
(1) 随着冻结时间的增加,煤样内部及表面温度呈下降趋势;煤样表面最低温度位于U形铜管附近,煤样表面最高温度位于煤样边界。
(2) 煤体在整个单轴压缩过程中依次经历压密、弹性变形、屈服和破坏4个阶段。在压密阶段,随着冻结时间的增加,煤样应变逐渐减小,压密阶段缩短;在弹性变形阶段和屈服阶段,随着冻结时间的增加,煤样最大应力和弹性模量均呈增大趋势。
[1] 贾方旭.高瓦斯低透煤层水力压裂石门揭煤技术与应用[D].淮南:安徽理工大学,2015.
JIA Fangxu.Technology and application of high-gas and low through coal seam hydraulic fracturing rock cross-cut coal uncovering[D].Huainan:Anhui University of Science and Technology,2015.
[2] 林柏泉.矿井瓦斯防治理论与技术[M].2版.徐州:中国矿业大学出版社,2010.
LIN Baiquan.Theory and technology of mine gas prevention[M].2nd ed.Xuzhou:China University of Mining and Technology Press,2010.
[3] 付建华,程远平.中国煤矿煤与瓦斯突出现状及防治对策[J].采矿与安全工程学报,2007,24(3):253-259.
FU Jianhua,CHENG Yuanping.Situation of coal and gas outburst in China and control countermeasures[J].Journal of Mining & Safety Engineering,2007,24(3):253-259.
[4] 徐西亮.煤体固化石门揭煤防突技术研究[D].淮南:安徽理工大学,2007.
XU Xiliang.Study of against outburst in the cross-cut by curing coal[D].Huainan:Anhui University of Science and Technology,2007.
[5] 余立华,史春.石门揭煤防突技术讨论[J].中小企业管理与科技,2012(6):135-136.
YU Lihua,SHI Chun.Discussion on anti-outburst technology of uncovering coal seam in cross-cut[J].Management & Technology of SME,2012(6):135-136.
[6] 任明龙.冻结作用对原煤力学性能影响的试验研究[D].重庆:重庆大学,2018.
REN Minglong.Experimental study of the effect of freezing on the mechanical properties of raw coal[D].Chongqing:Chongqing University,2018.
[7] 谢雄刚.石门揭煤过程煤与瓦斯突出的注液冻结防治理论及技术研究[D].长沙:中南大学,2010.
XIE Xionggang.Study on the control theory and technology by injecting liquid and freezing of the coal and gas outburst during uncovering coal seam in cross-cut[D].Changsha:Central South University,2010.
[8] 叶青,冯涛,林柏泉,等.石门揭煤过程中煤与瓦斯延时突出及防治技术研究[J].中国安全科学学报,2008,18(9):167-171.
YE Qing,FENG Tao,LIN Baiquan,et al.Study on prevention and control technology of gas and coal delay outburst in uncovering coal seam in cross-cut[J].China Safety Science Journal,2008,18(9):167-171.
[9] 冯涛,谢雄刚,刘辉,等.注液冻结法在石门揭煤中防突作用的可行性研究[J].煤炭学报,2010,35(6):937-941.
FENG Tao,XIE Xionggang,LIU Hui,et al.Research on feasibility in preventing the coal and gas outburst by infecting liquid and freezing in uncovering coal seam in cross-cut[J].Journal of China Coal Society,2010,35(6):937-941.
[10] FENG Tao,XIE Xionggang.An experimental study of the effect of injecting water and freezing on mechanical properties of outburst-prone coal seam[J].Procedia Earth and Planetary Science,2009,1(1):560-564.
[11] 谢雄刚,冯涛,余照阳.石门揭露冻结煤层瓦斯突出过程的数值模拟[J].煤矿安全,2012,43(9):4-6.
XIE Xionggang,FENG Tao,YU Zhaoyang.Numerical simulation of coal and gas outburst process in uncovering frozen coal seam in cross-cut[J].Safety in Coal Mines,2012,43(9):4-6.
[12] 谢雄刚,冯涛.石门揭露突出煤层冻结温度场数值模拟研究[J].煤炭学报,2011,36(9):1511-1514.
XIE Xionggang,FENG Tao.Research on numerical simulation of freezing temperature field in uncovering outburst coal seam in cross-cut[J].Journal of China Coal Society,2011,36(9):1511-1514.
[13] 翟成,董若蔚.低温冻结石门揭煤煤体未冻水含量变化特征[J].煤炭科学技术,2019,47(1):132-138.
ZHAI Cheng,DONG Ruowei.Variation features of unfrozen water content of coal under low temperature freezing in uncovering coal in cross-cut[J].Coal Science and Technology,2019,47(1):132-138.
[14] 徐永.含水率影响成型煤样力学性质实验研究[D].廊坊:华北科技学院,2016.
XU Yong.Experiment study on mechanics properties of briquette coal is influenced by moisture content[D].Langfang:North China Institute of Science and Technology,2016.
[15] 秦虎,黄滚,王维忠.不同含水率煤岩受压变形破坏全过程声发射特征试验研究[J].岩石力学与工程学报,2012,31(6):1115-1120.
QIN Hu,HUANG Gun,WANG Weizhong.Experimental study of acoustic emission characteristics of coal samples with different moisture contents in process of compression deformation and failure[J].Chinese Journal of Rock Mechanics and Engineering,2012,31(6):1115-1120.
[16] 闫道成.不同含水率煤体液氮冻融损伤效应实验研究[D].徐州:中国矿业大学,2019.
YAN Daocheng.Experimental study on the effects of liquid nitrogen freezing and thawing damage in coal with different water content[D].Xuzhou:China University of Mining and Technology,2019.
[17] 秦雷.液氮循环致裂煤体孔隙结构演化特征及增透机制研究[D].徐州:中国矿业大学,2018.
QIN Lei.Pore evolution after fracturing with cyclic liquid nitrogen and the mechanism of permeability enhancing[D].Xuzhou:China University of Mining and Technology,2018.
[18] 董若蔚.基于液氮冻结的石门揭煤防突方法实验研究[D].徐州:中国矿业大学,2019.
DONG Ruowei.Experimental research on outburst prevention method based on liquid nitrogen freezing for uncovering coal in crosscut[D].Xuzhou:China University of Mining and Technology,2019.
ZHOU Zhen,ZHAI Cheng.Study on the change law of temperature and mechanical properties of coal body in uncovering coal seam in low temperature freezing cross-cut[J].Industry and Mine Automation,2021,47(2):70-74.