开采厚度对沿空掘巷围岩稳定性的影响分析

杨真1, 杨永亮1, 郭瑞瑞1, 郭爱伟1, 赵杨阳2

(1.国家能源集团 神东煤炭集团布尔台煤矿, 内蒙古 鄂尔多斯 017209; 2.中交(西安)铁道设计研究院有限公司, 陕西 西安 710065)

摘要目前大多煤矿根据平均开采厚度来确定煤柱宽度,进而指导沿空掘巷,然而煤层在形成过程中受各种因素影响,存在同一煤层厚度变化较大的情况。针对综放工作面煤层开采厚度变化大,导致沿空掘巷围岩变形差异大及破坏机理复杂等问题,采用FLAC3D软件建立巷道模型,分析平均开采厚度下的围岩变形和破坏规律,并确定合理的煤柱宽度:平均开采厚度为18 m时,在实体煤帮侧,煤体内支承压力峰值与煤柱宽度呈正相关,且煤柱宽度大于8 m后,支承压力增长幅度变缓,因此合理的煤柱宽度应为8 m。在煤柱宽度确定的情况下,研究开采厚度对沿空掘巷围岩稳定性的影响,结果表明:煤柱宽度为8 m时,随着开采厚度的增加,顶板剪破坏面积增大,覆岩变形范围与顶板下沉量增大,但两帮剪破坏面积和两帮移近量减小;当煤层开采厚度小于18 m时,煤柱内支承压力峰值与煤层开采厚度呈负相关;当煤层开采厚度大于18 m时,煤柱内支承压力峰值与煤层开采厚度呈正相关,但增长幅度较小。根据数值模拟结果得出结论:开采厚度的增大对沿空巷道两帮的围岩控制有一定益处,但对顶板维护不利,对开采厚度较大的部位应及时补加锚杆进行强化支护。现场实际应用验证了本文研究的可靠性和有效性。

关键词综放开采; 沿空掘巷; 围岩稳定性; 开采厚度; 煤柱宽度

0 引言

沿空掘巷技术可以极大地增加煤炭资源的利用率,减少巷道维修成本,被广泛应用于我国煤矿巷道掘进中[1-4]。影响沿空掘巷围岩稳定性的因素主要有煤体赋存条件、掘巷位置(合理煤柱宽度)、围岩控制措施等,为了实现安全高效开采,专家学者从不同角度对沿空掘巷围岩稳定性进行了大量研究[5-9]。王红胜[10]通过建立沿空掘巷围岩结构的力学模型,分析了基本顶断裂结构对煤柱稳定性的影响,确定了巷道掘进的合理位置;彭林军等[11]对矿山灾害原因进行了分析,指出采场覆岩稳定时间和沿空掘巷位置是沿空掘巷开采技术能否成功的关键因素;冯吉成等[12]结合理论计算和现场工程实测,研究了采动应力和塑性区分布状态对沿空巷道变形的影响,认为煤柱合理宽度不仅要考虑煤柱自身稳定性,还要考虑巷道围岩受采动影响的变形量;郭金刚等[13]结合现场实际工程条件,得出采动影响范围大、煤柱稳定性差和围岩本身的裂隙是特厚煤层综放沿空掘巷的主要特点,第一次实现了对12 m厚的厚煤层沿空掘巷围岩的有效控制;杨米加等[14]针对沿空巷道围岩强度弱化规律进行分析研究,提出了一种新型的巷道支护方法。

目前大多煤矿根据平均开采厚度来确定煤柱宽度,进而指导沿空掘巷。然而,煤层在形成过程中受各种因素影响,存在同一煤层厚度变化较大的情况。工作面不同的开采厚度对沿空掘巷围岩变形及破坏的影响存在差异,而现有研究涉及煤体自身赋存条件对沿空掘巷围岩稳定性影响的较少。因此,本文基于甘肃靖远煤电股份有限公司魏家地煤矿东1100工作面的地质条件,分析平均开采厚度下的围岩变形和破坏规律,并确定合理的煤柱宽度;在煤柱宽度确定的情况下,研究开采厚度对沿空掘巷围岩稳定性的影响。

1 工程概况

东1100综放工作面位于东一采区上部一煤层,埋深为447~473 m,倾向长度为130 m,走向长度为1 718 m。煤层总厚度为9.41~24.84 m,平均总厚度为18.38 m,有益厚度为8.51~22.03 m,平均有益厚度为14.8 m,可采厚度为7.61~19.12 m,平均可采厚度为12 m。煤层倾角为5~17°,平均煤层倾角为11°。煤层抗压强度约为1.60 MPa,煤体性质极软,基本顶以粉砂岩为主,属于中硬岩层,基本底以粉砂岩、泥岩为主,工作面岩层柱状图如图1所示。研究区工作面的煤层厚度变化大,对沿空掘巷工程提出了较高的要求。因此,有必要对其围岩变形及破坏规律展开研究。

图1 岩层柱状图
Fig.1 Rock histogram

2 平均开采厚度下的围岩变形和破坏规律

2.1 模型建立

根据魏家地煤矿地质和开采技术条件,基于岩层柱状图,采用FLAC3D软件进行建模,煤层及顶底板岩层均采用摩尔-库伦本构关系模型。为降低边界效应对研究侧向支承应力及巷道围岩破坏的影响,设模型上下边界距巷道10倍巷宽,左右边界距巷道20倍巷宽,模型尺寸为200 m×200 m×100 m(长×宽×高),取模型中部的截面进行分析。模型共划分为538 000个单元和539 068个节点。FLAC3D数值模型如图2所示。

图2 FLAC3D数值模型
Fig.2 FLAC3D numerical model

模型底部和四周边界固定,顶部设置为自由边界,施加上覆岩层载荷(7.29 MPa)。研究区的煤岩体物理力学参数见表1。

表1 煤岩体物理力学参数
Table 1 Physical mechanics parameters of coal and rock

岩性体积模量/GPa剪切模量/GPa密度/(kg·m-3)内摩擦角/(°)黏聚力/MPa粗粒砂岩7.406.602 5004012.40细粒砂岩6.303.602 550326.20砂砾岩8.006.002 500457.10粉砂岩5.603.702 600337.60泥岩1.130.312 300292.45煤1.090.411 400343.30砂质泥岩2.801.402 500362.80

2.2 参数设置

根据煤层巷道分层明显、非均质的特征,以煤柱宽度为x轴、煤柱厚度为y轴,建立煤体应力极限平衡力学模型(图3)[15],并得到极限平衡区(塑性区)宽度解析式:

(1)

(2)

(3)

式中:x0为塑性区宽度,m;M为开采厚度,m;λ为侧压系数;φ0为滑移面的内摩擦角,(°);Kz为应力集中系数;P为上覆岩层压力,MPa;φ为煤层倾角,(°);C0为滑移面黏聚力,MPa;σy为塑性区内煤体支承压力,MPa;Px为煤帮支护阻力,MPa;τxy为塑性区内煤体剪应力,MPa。

图3 煤体应力极限平衡力学模型
Fig.3 Mechanical model of coal stress limit equilibrium

依据东1100综放工作面运输巷道地质条件选取基本参数:煤层开采厚度M为18 m,滑移面内摩擦角φ0为34°,黏聚力C0为1.6 MPa,侧压系数λ为1.0;煤帮支护阻力Px为0.5 MPa;应力集中系数Kz为3;覆岩压力P为10.5 MPa,煤层倾角φ取11°。用式(1)—式(3)计算得出,煤层平均开采厚度为18 m时,塑性区宽度为11.4 m。故沿空掘巷时,合理煤柱宽度范围为≤11.4 m。

2.3 平均开采厚度下的支承压力分布规律

当煤层平均开采厚度为18 m时,选取煤柱宽度为3~12 m,共设计10个模拟方案进行研究,煤柱内支承压力(σ)云图如图4所示,支承压力分布曲线如图5所示。结合原岩应力(通过埋深求解)分析可得:当煤柱宽度由3 m增加到12 m时,煤柱内支承压力集中系数(支承压力集中系数=支承压力/原岩应力)从1.2增大至3.1;实体煤帮支承压力集中系数从2.3增大至2.8,受煤柱宽度影响较小。

随着煤柱内的支承压力峰值位置不断向煤柱深部转移,峰值逐渐增大。当煤柱宽度为7 m时,距煤柱帮0.8~1.5 m范围内出现承压区,但承压区范围相对较小;当煤柱宽度为8 m时,距煤柱帮0.8~2.5 m范围内出现承压区,承压区宽度大于1.5 m,可满足锚杆锚固的需要。在实体煤帮侧,煤体内支承压力峰值与煤柱宽度呈正相关,且煤柱宽度大于8 m后,支承压力增长幅度变缓。因此,开采厚度为18 m时,合理的煤柱宽度应为8 m,承压区如图6所示。

(a) 煤柱宽度为3 m

(b) 煤柱宽度为7 m

(c) 煤柱宽度为8 m

(d) 煤柱宽度为12 m

图4 开采厚度为18 m时煤柱内支承压力云图
Fig.4 Cloud map of supporting pressure in coal pillar when mining thickness is 18 m

(a) 煤柱内支承压力

(b) 实体煤帮内支承压力

图5 开采厚度为18 m时巷道两帮内支承压力分布曲线
Fig.5 Distribution curves of supporting pressure in two sides of roadway when the mining thickness is 18 m

2.4 平均开采厚度下的破坏机理及变形分析

当煤层的开采厚度为18 m时,围岩塑性区分布如图7所示。沿空巷道靠近煤柱侧顶板主要为拉剪破坏,靠近实体煤帮侧顶板及实体煤帮主要为剪切破坏,煤柱帮主要为拉剪破坏。随着煤柱宽度增加,煤柱内拉应力破坏区逐渐向岩层深部转移,浅部围岩受到剪切破坏,破坏面积逐渐增大;巷道浅部围岩受到的拉应力增强,拉破坏面积逐渐增大;实体煤帮内拉破坏面积逐渐减小,剪破坏面积增大。

图6 煤柱宽度为8 m时的承压区
Fig.6 Pressure zone when pillar width is 8 m

(a) 煤柱宽度为3 m

(b) 煤柱宽度为7 m

(c) 煤柱宽度为8 m

(d) 煤柱宽度为12 m

图7 开采厚度为18 m时围岩塑性区分布
Fig.7 Plastic zone distribution of surrounding rock when mining thickness is 18 m

当煤层开采厚度为18 m时,围岩变形如图8所示,顶板下沉量、两帮移近量与煤柱宽度呈正相关。煤柱宽度取8 m时,顶板下沉量为0.499 m,两帮移近量为0.352 m。

(a) 顶板下沉量

(b) 两帮移进量

图8 开采厚度18 m时的围岩变形
Fig.8 Deformation of surrounding rock when mining thickness is 18 m

3 开采厚度对沿空掘巷围岩稳定性的影响

3.1 不同开采厚度下的支承压力分布规律

当煤柱宽度为8 m时,选取开采厚度为8~24 m进行模拟计算,煤柱内支承压力云图如图9所示,巷道两帮的支承压力分布曲线如图10所示。分析得出:① 煤层开采厚度小于18 m时,煤柱内支承压力峰值与煤层开采厚度呈负相关,煤柱内支承压力较大;开采厚度为8 m时,煤柱内支承压力达32 MPa,如图10(a)所示。② 煤层开采厚度大于18 m时,煤柱内支承压力峰值与煤层开采厚度呈正相关,煤柱内支承压力峰值较小,基本趋于稳定,易于进行煤柱帮控制;实体煤帮内的支承压力峰值与煤层开采厚度呈正相关,如图10(b)所示。

(a) 开采厚度为8 m

(b) 开采厚度为12 m

(c) 开采厚度为16 m

(d) 开采厚度为22 m

图9 不同开采厚度下煤柱内支承压力云图
Fig.9 Cloud map of supporting pressure in coal pillar under different mining thickness

综上,在开采厚度小于18 m的巷道内,要加强煤柱帮的控制;在开采厚度大于18 m的巷道内,要加强实体煤帮的控制。

3.2 不同开采厚度下的围岩破坏机理及变形分析

当煤柱宽度为8 m时,巷道两帮内塑性区分布情况有所不同,如图11所示。巷道两帮以剪破坏为主,随着开采厚度增加,剪破坏面积逐渐减小,拉破坏面积逐渐增大,且煤柱侧帮角所受拉剪混合破坏面积逐渐增大;巷道顶板以拉剪破坏为主,且顶板剪破坏面积增大,上覆岩层变形范围增大。在巷道掘进过程中,对于煤层开采厚度较大的区域,要注意加强顶板控制。

(a) 煤柱内支承压力分布

(b) 实体煤帮内支承压力分布

图10 不同开采厚度下巷道两帮内支承压力分布曲线
Fig.10 Distribution curves of supporting pressure in two sides of roadway under different mining thickness

(a) 开采厚度为8 m

(b) 开采厚度为12 m

(c) 开采厚度为16 m

(d) 开采厚度为22 m

图11 不同开采厚度下围岩塑性区分布
Fig.11 Plastic zone distribution of surrounding rock under different mining thickness

当煤柱宽度为8 m时,不同开采厚度下的围岩变形如图12所示。在8 m煤柱宽度下,顶板下沉量与煤层开采厚度呈正相关,两帮移近量与煤层开采厚度呈负相关;当煤层开采厚度由8 m增加到24 m时,顶板下沉量增加了136.4%;两帮移近量减少了47.6%。分析得出,煤层开采厚度的增大对沿空巷道两帮的围岩控制有一定的益处,但对顶板维护不利。

(a) 顶板下沉量

(b) 两帮移进量

图12 不同开采厚度下的围岩变形
Fig.12 Deformation of surrounding rock under different mining thickness

4 结论

(1) 结合魏家地煤矿东1100综放工作面运输巷道地质条件,采用理论分析和数值模拟的方法得出了煤层平均开采厚度为18 m时,合理的煤柱宽度为8 m。

(2) 煤柱宽度为8 m时,围岩位移变形呈现出如下规律:开采厚度为8~24 m时,顶板下沉量与开采厚度呈正相关,两帮移近量与开采厚度呈负相关。

(3) 开采厚度的增大对沿空巷道两帮的围岩控制有一定益处,但对顶板维护不利,对开采厚度较大的部位应及时补加锚杆进行强化支护。

(4) 在魏家地煤矿东1100工作面沿空巷道掘进实际过程中,对于开采厚度大于18 m的工作面,采用原支护方案时顶板下沉量较大。根据本文结论,在顶板跨度1/3及2/3处采用锚杆进行补强支护后,围岩变形得到了较好的控制,验证了本文研究的可靠性和有效性。

参考文献(References):

[1] LIU Quansheng,PAN Yucong,LIU Jianping,et al.Comparison and discussion on fragmentation behavior of soft rock in multi-indentation tests by a single TBM disc cutter[J].Tunnelling and Underground Space Technology,2016,57:151-161.

[2] CHEN Shunman,WU Aixiang,WANG Yiming,et al.Study on repair control technology of soft surrounding rock roadway and its application[J].Engineering Failure Analysis,2018,92:443-455.

[3] 张自政,柏建彪,王卫军,等.沿空留巷充填区域直接顶受力状态探讨与应用[J].煤炭学报,2017,42(8):1960-1970.

ZHANG Zizheng,BAI Jianbiao,WANG Weijun,et al.Study on stress state of immediate roof above backfill area in gob-side entry retaining and its application[J].Journal of China Coal Society,2017,42(8):1960-1970.

[4] 张元超,杨圣奇,陈淼,等.深井综放沿空掘巷实体煤帮变形破坏机制及控制技术[J].岩土力学,2017,38(4):1103-1113.

ZHANG Yuanchao,YANG Shengqi,CHEN Miao,et al.Deformation and failure mechanism of entity coal side and its control technology for roadway driving along next goaf in fully mechanized top coal caving face of deep mines[J].Rock and Soil Mechanics,2017,38(4):1103-1113.

[5] 武精科,阚甲广,谢生荣,等.深井沿空留巷非对称破坏机制与控制技术研究[J].采矿与安全工程学报,2017,34(4):739-747.

WU Jingke,KAN Jiaguang,XIE Shengrong,et al.Mechanism of asymmetric failure in deep gob-side entry retaining and its control technology[J].Journal of Mining & Safety Engineering,2017,34(4):739-747.

[6] WANG Jianli,XU Ying,LI Wenfeng,et al.Layout and support technology of entry for pillar face[J].International Journal of Mining Science and Technology,2016,26(5):877-884.

[7] 张自政,柏建彪,陈勇,等.沿空留巷不均衡承载特征探讨与应用分析[J].岩土力学,2015,36(9):2665-2673.

ZHANG Zizheng,BAI Jianbiao,CHEN Yong,et al.Investigation and application analysis of unbalanced bearing characteristics of gob-side entry retaining[J].Rock and Soil Mechanics,2015,36(9):2665-2673.

[8] 于洋,柏建彪,王襄禹,等.软岩巷道非对称变形破坏特征及稳定性控制[J].采矿与安全工程学报,2014,31(3):340-346.

YU Yang,BAI Jianbiao,WANG Xiangyu,et al.Study on asymmetric distortion and failure characteristics and stability control of soft rock roadway[J].Journal of Mining & Safety Engineering,2014,31(3):340-346.

[9] 周钢,王鹏举,邹长磊,等.复杂构造应力采区沿空掘巷非对称支护研究[J].采矿与安全工程学报,2014,31(6):901-906.

ZHOU Gang,WANG Pengju,ZOU Changlei,et al.Asymmetric supporting research of gob-side entry driving in complex tectonic stress mining area[J].Journal of Mining & Safety Engineering,2014,31(6):901-906.

[10] 王红胜.沿空巷道窄帮蠕变特性及其稳定性控制技术研究[D].徐州:中国矿业大学,2011.

WANG Hongsheng.Research on the creep property and its stability control technology of gob-side entry's narrow side[D].Xuzhou:China University of Mining and Technology,2013.

[11] 彭林军,张东峰,郭志飚,等.特厚煤层小煤柱沿空掘巷数值分析及应用[J].岩土力学,2013,34(12):3609-3616.

PENG Linjun,ZHANG Dongfeng,GUO Zhibiao,et al.Numerical analysis of thick coal seam small pillar along gob roadway and its application[J].Rock and Soil Mechanics,2013,34(12):3609-3616.

[12] 冯吉成,马念杰,赵志强,等.深井大采高工作面沿空掘巷窄煤柱宽度研究[J].采矿与安全工程学报,2014,31(4):580-586.

FENG Jicheng,MA Nianjie,ZHAO Zhiqiang,et al.Width of narrow coal pillar of roadway driving along goaf at large height mining face in deep mine[J].Journal of Mining & Safety Engineering,2014,31(4):580-586.

[13] 郭金刚,王伟光,岳帅帅,等.特厚煤层综放沿空掘巷围岩控制机理及其应用[J].煤炭学报,2017,42(4):825-832.

GUO Jingang,WANG Weiguang,YUE Shuaishuai,et al.Surrounding rock control mechanism and its application of gob-side driving entry in extra thick coal seam[J].Journal of China Coal Society,2017,42(4):825-832.

[14] 杨米加,贺永年,张农.巷道围岩强度弱化规律及其动态加固技术[J].工程力学,1999(5):3-5.

YANG Mijia,HE Yongnian,ZHANG Nong.The law of surrounding rock strength decreasing and its dynamic supporting technology[J].Engineering Mechanics,1999(5):3-5.

[15] 庞绪峰.坚硬顶板孤岛工作面冲击地压机理及防治技术研究[D].北京:中国矿业大学(北京),2013.

PANG Xufeng.Study on mechanism and control technology of coal bump in the island workface with hard roof[D].Beijing:China University of Mining and Technology (Beijing),2013.

Analysis of the influence of mining thickness on the stability of surrounding rock of goaf-side roadway driving

YANG Zhen1, YANG Yongliang1, GUO Ruirui1, GUO Aiwei1, ZHAO Yangyang2

(1.Shendong Coal Group Buertai Coal Mine, National Energy Group, Ordos 017209, China;2.Zhongjiao (Xi'an) Railway Design and Research Institute Co., Ltd., Xi'an 710065, China)

Abstract:At present, in most coal mines, the coal pillar width of goaf-side roadway driving is determined by the average mining thickness. However, the thickness of the same coal seam could be varied greatly by various factors during the formation process. The large variation of mining thickness in the fully mechanized working face leads to large difference of surrounding rock deformation and complex damage mechanism of the goaf-side roadway driving. In order to solve the above problems, FLAC3D software is used to establish a roadway model so as to analyze the surrounding rock deformation and damage law under the average mining thickness, and determine the reasonable coal pillar width. When the average mining thickness is 18 m, on the side of the solid coal, the peak supporting pressure in the coal is positively correlated with the coal pillar width. Moreover, when the coal pillar width is greater than 8 m, the growth rate of the supporting pressure slows down. Therefore, the reasonable coal pillar width should be 8 m. This paper studies the influence of mining thickness on the stability of the surrounding rock of goaf-side roadway driving in the context of determined coal pillar width. The results show that when the coal pillar width is 8 m, with the increase of mining thickness, the shear damage area of roof increases, and the rock deformation range and the roof subsidence increase. However, the shear damage area of two sides and the distance between the two sides decrease. When the mining thickness is less than 18 m, the peak support pressure in the coal pillar is negatively correlated with the mining thickness. When the mining thickness is greater than 18 m, the peak support pressure in the coal pillar is positively correlated with the mining thickness, but the growth is small. According to the simulation analysis results, it is concluded that the increase of mining thickness is beneficial to the control of the surrounding rock along the two sides of the goaf roadway, but not beneficial to the roof maintenance. For areas with large mining thickness, anchor rods should be added to strengthen support in time. The actual application on site verifies the reliability and validity of the research in this paper.

Key words:fully mechanized mining; goaf-side roadway driving; stability of surrounding rock; mining thickness; coal pillar width

文章编号1671-251X(2021)02-0038-07

DOI:10.13272/j.issn.1671-251x.2020090032

中图分类号:TD322

文献标志码:A

收稿日期:2020-09-14;修回日期:2021-01-15;责任编辑:胡娴。

作者简介:杨真(1970-),男,陕西横山人,高级工程师,现主要从事煤矿管理、矿山压力与岩层控制等方面的研究工作,E-mail:1224252292@qq.com。

引用格式:杨真,杨永亮,郭瑞瑞,等.开采厚度对沿空掘巷围岩稳定性的影响分析[J].工矿自动化,2021,47(2):38-44.

YANG Zhen,YANG Yongliang,GUO Ruirui,et al.Analysis of the influence of mining thickness on the stability of surrounding rock of goaf-side roadway driving[J].Industry and Mine Automation,2021,47(2):38-44.