对于矿井高压供电系统,《煤矿安全规程》第443条规定地面供电变压器、发电机及井下配电变压器的中性点严禁直接接地。因此,矿井高压电网主要采用中性点经消弧线圈接地系统[1-2]。单相接地故障作为矿井高压电网的多发性故障类型,其故障电流会受到消弧线圈对容性电流的补偿作用而减小,使得故障难以检测与识别,无法迅速切除,进而导致绝缘击穿事故扩大,影响供电可靠性[3]。因此,根据单相接地故障特征快速识别故障区段,对于矿井高压电网安全稳定运行具有重要意义。
近年来,配电网故障区段定位技术取得了很大发展[4],但鲜有涉及矿井高压电网故障区段定位技术的研究[5]。矿井高压电网作为配电网的一部分,采用现有技术实现故障区段定位具有可能性[6]。根据故障特征量不同,现有配电网故障区段定位方法可分为稳态法、暂态法2种[7]。传统的稳态法(如零序功率方向法[8]、区段零序导纳法[9]、零序电流增量法[10]等)在中性点经消弧线圈接地系统中,特别是在过补偿情况下存在定位死区[11]。暂态法通常根据不同的相模变换方法(如Karrenbauer变换[12]、Clark变换[13]等)对故障发生后系统的三相电流进行处理[14],目前效果较好且理论研究最为广泛的是瞬时对称分量法[15]。利用该方法可得到零序电流的暂态量,从而构建故障判据[16],确定故障区段定位方法[17],但在实际应用中需配合相应的选相装置[18],且变换得到的暂态量会随着时间衰减,造成故障特征辨识不可靠[19]。
本文提出一种基于一模分量的矿井高压电网故障区段定位方法。对故障附加状态下经Clark变换得到的一模分量简化模型进行理论分析,结果表明故障点上游的电流一模分量远大于故障点下游,且该特征不受消弧线圈补偿度和负荷电流的影响。根据该特征构建了故障区段定位判据,同时确定了故障区段定位方法。该方法原理简单,无需选相且易于工程实现。仿真及实验结果表明该方法在不同故障条件下均可实现对故障区段的准确定位。
为了对矿井高压电网单相接地故障进行模量分析,引入相模变换。选择故障定位前无需选相的Clark变换。Clark相模变换矩阵H与Clark矩阵S的关系为H=S-1,已知则有[x0 x1 x2]T=H[xa xb xc]T,其中x0,x1,x2分别为相模变换后的零模量、一模量和二模量,xa,xb,xc为三相电气量。
在不同的单相接地故障边界条件下,经Clark变换后的零模量在谐振接地系统中易受消弧线圈影响,电流一模量和二模量见表1,其中ia,ib,ic为故障点三相电流[20]。可看出二模量在b相发生单相接地故障时失效,而一模量能反映所有的单相接地故障类型。因此,选择经Clark变换后的电流一模量为对象,研究矿井高压电网故障区段定位方法。
表1 单相接地故障下电流一模量和二模量
Table 1 One-mode component and two-mode component
of current under single-phase grounding fault
故障类型边界条件一模量二模量a相接地ib=ic=0(1/6)ia(1/2)iab相接地ia=ic=0-(1/3)ia0c相接地ia=ib=0(1/6)ic-(1/2)ic
故障附加状态下的电气量能够反映线路的故障状态,且不受系统负荷电流的影响,因此选择故障附加状态下的一模量(定义为故障一模分量)为特征进行分析[21]。
由于矿井高压电网地处潮湿环境,线路较短且大多采用电缆线路,所以线路电阻和电抗较小,对地电容效应不可忽略。系统在发生单相接地故障进入稳态时,暂态高频分量迅速衰减为零,等值电路呈现容性。为便于工程分析,仅考虑线路对地电容,以a相发生单相接地故障为例,根据叠加定理建立矿井高压电网单相接地故障附加状态模型,如图1所示。其中UN为中性点对地电压;L为消弧线圈(补偿电感);Pk(k=1,2,3,4)为电流监测点;C11,C12,C13,C14分别为区段P1-P2、区段P2-P3、P3至负荷侧、P4至负荷侧的对地电容;C2为馈线2对地电容;ufa,ufb,ufc为故障点三相对地电压;ifa,ifb,ifc为故障点三相对地电流。定义故障点至母线的线路、母线、消弧线圈及其他健康馈线为故障点上游,故障点至负荷侧线路及故障馈线的无故障分支为故障点下游。
图1 矿井高压电网单相接地故障附加状态模型
Fig.1 Additional state model of single-phase grounding
fault of mine high-voltage power network
对上述模型中各部分进行Clark变换。
(1) 中性点的Clark变换。中性点各相对地电压相等,设为uN,则UN=[uN uN uN]T;设中性点三相对地电流为iNa,iNb,iNc,则中性点对地电流IN=[iNa iNb iNc]T=[iNa 0 0]T。经Clark变换得到中性点对地电压的模分量及对地电流的模分量
(1)
其中和分别为中性点对地电压、对地电流零模分量、一模分量和二模分量。即一模分量在消弧线圈上不产生电压但有电流通路,相当于一模分量的中性点对地短路。
(2) 边界点的Clark变换。设在f点发生a相接地故障,接地电流为If,则故障附加状态下的边界条件为ifa=If,ifb=ifc=0,即故障点三相电流IF=[ifa ifb ifc]T=[If 0 0]T。经过Clark变换得到故障电流的模分量
(2)
其中为经Clark变换后故障电流的零模分量、一模分量、二模分量。可见一模分量
同理分别对b,c相发生单相接地故障后的系统进行Clark变换,可得中性点b,c相仍对地短路,对应的故障点电流一模分量分别为(1/3)If,(1/6)If。
通过对图1中各部分进行Clark变换,得到一模分量等效模型,如图2(a)所示。其中分别为监测点P1—P4处电流一模分量;分别为故障点对应的电压、电流一模分量。由于一模分量模型中中性点相当于对地短路,所以故障点上游电流一模分量与下游电流一模分量存在以下关系:
(3)
考虑到一模分量等效模型中故障点下游电流一模分量为零,可对图2(a)简化,如图2(b)所示,其中虚线箭头方向即故障电流流向。
(a) 一模分量等效模型
(b) 一模分量简化模型
图2 矿井高压电网一模分量模型
Fig.2 One-mode component model of mine
high-voltage power network
由此得出故障附加状态下故障点上下游电流一模分量特征:① 故障点上下游电流一模分量幅值存在显著差异,为矿井高压电网故障区段定位提供了理论依据。② 中性点经消弧线圈接地系统在一模分量简化模型中相当于对地短路,避免了消弧线圈产生的电感电流对电流一模分量的影响。③ a,b,c任一相发生单相接地故障时都具有特征①,②,只存在模分量幅值差异,因此在进行故障定位前无需选相。
矿井高压电网是辐射性多段多分支结构的配电网络,以图3所示的简单配电馈线多分支网络为例,定义开关设备为节点1—7,①和②为分支节点[22]。
(1) 假设故障发生在区段5—6,则电流一模分量沿路径1—2—4—5流入并与中性点形成电流回路。上游节点为1,2,4,5,下游节点为3,6,7。对于分支节点①,此时相邻节点2,4的电流一模分量大小相等,而节点2 的电流一模分量远大于节点3;对于分支节点②,相邻节点4,5的电流一模分量大小相等,节点4的电流一模分量远大于节点7。根据故障路径上电流一模分量大小相等且不为零确定故障路径为1—2—4—5—6。而在故障路径上,根据节点5的电流一模分量远大于节点6,确定故障区段为5—6。
图3 配电馈线多分支网络
Fig.3 Distribution feeder multi-branch network
(2) 假设故障发生在区段2—3或2—4,由于该区段包含分支节点①,节点3,4都属于负荷侧线路,即处于故障点下游,所以区段2—3,2—4两侧的电流一模分量幅值差值相等,且在任一路径中差值都是最大的。
由此可得故障定位判据:在分支节点处确定故障路径,分支节点处不同方向的2个节点故障一模分量幅值差值相等时,可任选一条路径作为故障路径,不相等时选择差值最小的方向为故障路径。故障路径确定后,故障路径上相邻节点故障一模分量幅值差值最大的为故障区段。
按照上述故障区段定位判据实现中性点经消弧线圈接地系统的故障区段定位:根据变压器二次侧的零序电压是否越限及三相电压之间的关系确定是否发生单相接地故障,若是则利用故障一模分量幅值比较方法确定故障馈线。将故障馈线在发生故障前后的三相电流通过馈线终端设备上传至主站,此时启动故障区段定位程序即可确定故障区段。故障区段定位流程如图4所示。
通过Matlab/Simulink模块搭建10 kV矿井高压电网仿真模型,如图5所示。该网络为典型的单电源辐射式结构,1—8为各区段对应的分断开关,1和8对应的馈线开关所在线路为电缆线路,其余线路为架空线路[23]。线路参数见表2。将K点闭合即为中性点经消弧线圈接地系统。模型采用过补偿10%的运行方式。
图4 故障区段定位流程
Fig.4 Flow of fault section location
图5 矿井高压电网仿真模型
Fig.5 Simulation model of mine high-voltage
power network
表2 线路参数
Table 2 Line parameters
相序单位长度电阻/(Ω·km-1)单位长度电容/(μF·km-1)单位长度电感/(mH·km-1)电缆线路正序0.1100.2900.52零序0.3400.1901.54架空线路正序0.0960.0111.22零序0.2300.0073.66
设区段3—4发生a相单相接地故障,故障接地电阻Rf=500 Ω,故障角α=60°。故障点上下游节点在故障附加状态下电流一模分量波形如图6所示。可见故障点上游节点的电流一模分量幅值明显大于下游节点,虽在故障瞬间故障点下游会产生较大的冲击电流,但其幅值仍小于故障点上游节点。
(a) 上游节点
(b) 下游节点
图6 故障附加状态下电流一模分量波形
Fig.6 One-mode component waveforms of current under
fault additional state
定义ΔIm,n为区段m-n(m,n=1,2,…,8,且m≠n)两侧的电流一模分量幅值差值。在2个分支节点处,ΔI1,2<ΔI1,6,ΔI2,3<ΔI2,5,因此确定故障路径为1-2-3-4,故障区段定位向量M=[ΔI1,2 ΔI2,3 ΔI3,4]=[0 0 0.254],ΔI3,4最大,由此确定故障区段为3-4。
3.2.1 不同故障条件下方法适应性分析
根据故障位置、故障初始角、故障接地电阻不同,对三相分别发生单相接地故障时的情况进行仿真,结果见表3—表5。可看出在不同的故障条件下,矿井高压电网任一相发生单相接地故障时,故障区段两侧的电流一模分量幅值差值均明显大于非故障区段,即使在高阻情况下该特征依然存在。这表明本文方法不仅能够实现准确的故障区段定位,而且进行故障定位前无需选相。
表3 不同故障位置下故障区段定位结果(Rf=500 Ω,α=60°,过补偿10%)
Table 3 Fault section location results under different fault positions(Rf=500 Ω, α=60°, over compensation of 10%)
故障区段故障相分支向量 [ΔI1,2 ΔI1,6][ΔI2,3 ΔI2,5]故障路径故障区段定位向量[ΔI1,2 ΔI2,3 ΔI3,4]定位结果3-4a相[0 0.256] [0 0.254]b相 [0 0.671] [0 0.669]c相 [0 0.429] [0 0.428]1-2-3-4 [0 0 0.254]3-4 [0 0 0.669]3-4 [0 0 0.428]3-42-3/5a相 [0 0.256] [0.254 0.255]b相 [0 0.671] [0.669 0.670]c相 [0 0.429] [0.428 0.428]1-2-3-4 [0 0.254 0]2-3/5 [0 0.669 0]2-3/5 [0 0.428 0]2-3/51-2a相 [0.254 0.255] [0 0]b相 [0.670 0.672] [0 0]c相 [0.428 0.429] [0 0]1-2-3-4 [0.254 0 0]1-2 [0.670 0 0]1-2 [0.428 0 0]1-2
表4 不同故障初始角下故障区段定位结果(Rf=500 Ω,
过补偿10%)
Table 4 Fault section location results under different fault
initial angles(Rf=500 Ω, over compensation of 10%)
故障区段故障相α/(°)故障区段定位向量[ΔI1,2 ΔI2,3 ΔI3,4]定位结果3-4a相b相c相0[0 0 0.428]3-460[0 0 0.254]3-490[0 0 0.238]3-40[0 0 0.508]3-460[0 0 0.669]3-490[0 0 0.837]3-40[0 0 0.334]3-460[0 0 0.428]3-490[0 0 0.357]3-4
表5 不同接地电阻下故障区段定位结果(α=60°,
过补偿10%)
Table 5 Fault section location results under different
grounding resistances(α=60°, over compensation of 10%)
故障区段故障相Rf/Ω故障区段定位向量[ΔI1,2 ΔI2,3 ΔI3,4]定位结果3-4a相b相c相50[0 0 1.131]3-4500[0 0 0.254]3-410 000[0 0 0.016]3-450[0.001 0.002 3.306]3-4500[0 0 0.669]3-410 000[0 0 0.031]3-450[0 0 1.085]3-4500[0 0 0.428]3-410 000[0 0 0.024]3-4
3.2.2 系统运行方式对定位结果的影响分析
为了验证本文方法在分析部分故障特征量时不受消弧线圈补偿度的影响,设置区段3-4发生单相接地故障,对不同运行方式下的故障区段定位进行仿真,结果见表6。可看出在不同补偿度条件下,a,b,c任一相发生单相接地故障时,故障区段两侧电流一模分量幅值差值均明显大于非故障区段,表明故障特征不随系统运行方式而改变,且在任一相发生单相接地故障时始终存在,验证了本文方法不受消弧线圈补偿度及单相接地故障相的影响,可实现准确的故障区段定位。
表6 不同运行方式下故障区段定位结果(Rf=500 Ω,α=60°)
Table 6 Fault section location results under different
operation modes(Rf=500 Ω, α=60°)
故障相补偿度故障区段定位向量[ΔI1,2 ΔI2,3 ΔI3,4]定位结果a相b相c相过补偿10%[0 0 0.254]3-4完全补偿[0 0 0.254]3-4欠补偿20%[0 0 0.254]3-4直接接地[0 0 0.252]3-4过补偿10%[0 0 0.669]3-4完全补偿[0 0 0.669]3-4欠补偿20%[0 0 0.672]3-4直接接地[0 0 0.659]3-4过补偿10%[0 0 0.428]3-4完全补偿[0 0 0.428]3-4欠补偿20%[0 0 0.429]3-4直接接地[0 0 0.422]3-4
为了进一步验证本文方法,采用380 V矿井低压电网模拟实验平台(图7)进行实验,网络拓扑如图8所示。设置系统运行方式为过补偿10%,限于实验条件,故障初始角随机,故障发生在电流监测点5和6之间。
图7 380 V矿井低压电网模拟实验平台
Fig.7 Simulation experimental platform of 380 V
mine low-voltage power network
图8 故障区段定位实验网络拓扑
Fig.8 Network topology for fault section
location experiment
a相发生单相接地故障且接地电阻Rf=500 Ω时,故障点上下游监测点的电流一模分量波形如图9所示。可看出实验与仿真结果相同,故障点上游电流一模分量幅值明显大于故障点下游。实验结果见表7,可看出a,b,c任一相发生单相接地故障时都具有同一故障特征,即不同分支故障路径的分支向量最小,故障路径上故障区段的定位向量最大。
(a) 故障点上游
(b) 故障点下游
图9 区段5-6发生单相接地故障时上下游监测点
电流一模分量波形
Fig.9 Current one-mode component waveforms of
upstream and downstream monitoring points in case
of single-phase grounding fault in section 5-6
表7 故障区段定位实验结果
Table 7 Experimental results of fault section location
故障区段故障相Rf/Ω分支向量[ΔI2,3 ΔI2,5]故障区段定位向量[ΔI1,2 ΔI5,6]定位结果5-6a相b相c相50[0.001 5 0.000 2][0 0.001 3]5-6500[0.000 7 0.000 3][0 0.001 2]5-61 000[0.001 2 0.000 1][0 0.001 0]5-650[0.002 7 0.000 1][0 0.002 8]5-6500[0.002 8 0][0 0.002 8]5-61 000[0.003 3 0.000 2][0 0.003 1]5-650[0.001 1 0.000 4][0 0.001 5]5-6500[0.000 9 0.000 3][0 0.001 3]5-61 000[0.000 7 0.000 2][0 0.001 0]5-6
(1) 为保证矿井高压电网安全稳定运行,提出一种无需选相、基于故障一模分量的矿井高压电网故障区段定位方法。
(2) 该方法利用故障附加状态下故障点上下游电流一模分量幅值差异性实现故障区段定位,具有特征显著、不随时间衰减、不受消弧线圈补偿度及负荷电流影响的优势。
(3) 仿真和实验结果表明,该方法对于矿井高压电网任一相发生的单相接地故障均能实现准确的故障定位,不受故障初始角、故障接地电阻、故障位置和系统运行方式的影响,且算法简单,无需设置阈值,易于工程实现。
[1] 卢丹.基于WAMS的矿井高压电网单相接地故障选线及定位方法研究[D].北京:中国矿业大学(北京),2015.
LU Dan. Study on single-phase earth fault line detection and fault location method of coal mine high-voltage grid base on WAMS[D].Beijing:China University of Mining and Technology (Beijing),2015.
[2] 李科,随晓娜,张俊,等.矿井电网故障选线方法研究[J].工矿自动化,2018,44(5):70-75.
LI Ke,SUI Xiaona,ZHANG Jun,et al.Research on fault line selection method of mine power network[J].Industry and Mine Automation,2018,44(5):70-75.
[3] 王雪文,石访,张恒旭,等.基于暂态能量的小电流接地系统单相接地故障区段定位方法[J].电网技术,2019,43(3):818-825.
WANG Xuewen,SHI Fang,ZHANG Hengxu,et al.A single-phase earth fault location method based on transient energy for non-effectively grounded system[J].Power System Technology,2019,43(3):818-825.
[4] 叶雨晴,马啸,林湘宁,等.基于SOP的主动式谐振接地配电网单相接地故障区段定位方法[J].中国电机工程学报,2020,40(5):1453-1465.
YE Yuqing,MA Xiao,LIN Xiangning,et al.Single phase to ground fault location method for active resonant grounding distribution network based on SOP[J].Proceedings of the CSEE, 2020,40(5):1453-1465.
[5] TENG G H,HUANG W H,LUAN S W.Automatic and fast faulted line-section location method for distribution systems based on fault indicators[J].IEEE Transactions on Power Systems,2014,29(4):1653-1662.
[6] DASHTI R,SADEH J.Fault section estimation in power distribution network using impedance-based fault distance calculation and frequency spectrum analysis[J].IET Generation, Transmission & Distribution,2014,8(8):1406-1417.
[7] 唐金锐,尹项根,张哲,等.配电网故障自动定位技术研究综述[J].电力自动化设备,2013,33(5):7-13.
TANG Jinrui,YIN Xianggen,ZHANG Zhe,et al. Survey of fault location technology for distribution networks [J]. Electric Power Automation Equipment,2013,33(5):7-13.
[8] 马士聪,高厚磊,徐丙垠,等.配电网故障定位技术综述[J].电力系统保护与控制,2009,37(11):119-124.
MA Shicong,GAO Houlei,XU Bingyin,et al.A survey of fault location methods in distribution network[J].Power System Protection and Control,2009,37(11):119-124.
[9] 张林利,高厚磊,徐丙垠,等.基于区段零序导纳的小电流接地故障定位方法[J].电力系统自动化,2012,36(20):94-98.
ZHANG Linli,GAO Houlei,XU Bingyin,et al. Fault location method based on zero-sequence admittance of sections in non-effectively grounded system[J].Automation of Electric Power Systems,2012,36(20):94-98.
[10] 吴杰,王政.基于FTU的小电流接地系统故障定位方法再研究[J].继电器,2004,32(22):29-34.
WU Jie,WANG Zheng.Restudy on fault location method of small current grounding system based on FTU[J].Relay, 2004,32(22):29-34.
[11] 朱革兰,李松奕,兰金晨,等.基于零序特征量的配电网接地故障区段定位方法[J].电力自动化设备,2021,41(1):34-43.
ZHU Gelan,LI Songyi,LAN Jinchen,et al. Fault section location method for grounding fault of distribution network based on zero-sequence characteristic[J].Electric Power Automation Equipment,2021,41(1):34-43.
[12] 姜惠兰,陈娟,张驰.基于改进Karrenbauer变换的有源配电网故障定位新方法[J].电力系统及其自动化学报,2018,30(11):39-43.
JIANG Huilan,CHEN Juan,ZHANG Chi. New fault location method for active distribution network based on improved Karrenbauer transform[J].Proceedings of the CSU-EPSA,2018,30(11):39-43.
[13] 牛耕,周龙,裴玮,等.基于克拉克电流相角差值的低压有源配电网故障定位方法[J].中国电机工程学报,2015,35(增刊1):15-24.
NIU Geng,ZHOU Long,PEI Wei,et al. Fault location method for low voltage active distribution network based on phase-angle differences of the Clark currents[J].Proceedings of the CSEE,2015,35(S1):15-24.
[14] 王政.连接有短线路的配电网故障精确定位研究[D].徐州:中国矿业大学,2019.
WANG Zheng. Study on accurate fault location schemes for distribution network connecting short lines[D].Xuzhou:China University of Mining and Technology,2019.
[15] 王建元,邢春阳,胡跃旭,等.基于TWACS的配电网故障定位算法研究[J].电测与仪表,2017,54(9):66-70.
WANG Jianyuan,XING Chunyang,HU Yuexu,et al. Distribution network fault location algorithm based on TWACS[J].Electrical Measurement & Instrumentation,2017,54(9):66-70.
[16] 李振兴,王朋飞,王新,等.基于幅值特征和Hausdorff距离的配电网故障定位方法[J].电力系统自动化,2020,44(7):169-177.
LI Zhenxing,WANG Pengfei,WANG Xin, et al.Fault location method of distribution network based on amplitude feature and Hausdorff distance[J].Automation of Electric Power Systems,2020,44(7):169-177.
[17] 李泽文,刘基典,席燕辉,等.基于暂态波形相关性的配电网故障定位方法[J].电力系统自动化,2020,44(21):1-11.
LI Zewen,LIU Jidian,XI Yanhui,et al.Fault location method for distribution network based on transient waveform correlation[J].Automation of Electric Power Systems,2020,44(21):1-11.
[18] 李卫国,许文文,王旭光,等.基于广义S变换的有源配电网故障定位方法[J].电测与仪表, 2021,58(6):105-112.
LI Weiguo,XU Wenwen,WANG Xuguang,et al.Fault location method for active distribution network based on generalized S transform[J].Electrical Measurement & Instrumentation, 2021,58(6):105-112.
[19] WANG Xuewen,ZHANG Hengxu,SHI Fang,et al. Location of single phase to ground faults in distribution networks based on synchronous transients energy analysis[J]. IEEE Transactions on Smart Grid,2019,11(1):774-785.
[20] 宋国兵,李森,康小宁,等.一种新相模变换矩阵[J].电力系统自动化,2007,31(14):57-60.
SONG Guobing,LI Sen,KANG Xiaoning,et al. A novel phase-mode transformation matrix[J].Automation of Electric Power Systems,2007,31(14):57-60.
[21] 童晓阳,余森林,温豪.基于正序电流故障分量的输电线路故障检测[J].电力系统自动化,2018,42(24):150-156.
TONG Xiaoyang,YU Senlin,WEN Hao. Fault detection of transmission lines based on fault component of positive sequence current[J].Automation of Electric Power Systems,2018,42(24):150-156.
[22] 王彦文,卢丹,高彦.基于广域同步测量技术的煤矿高压电网故障区段定位算法[J].煤炭学报,2015,40(增刊1):285-291.
WANG Yanwen, LU Dan, GAO Yan. Fault section locating algorithm for coalmine high-voltage power network based on wide area synchronized measurement technology[J].Journal of China Coal Society,2015,40(S1):285-291.
[23] 庄伟,牟龙华,童荣斌.基于罗氏线圈二次信号的煤矿高压电网接地故障区段定位[J].煤炭学报,2014,39(6):1184-1190.
ZHUANG Wei, MU Longhua,TONG Rongbin. Secondary signal of Rogowski coil based ground fault section location in coalmine high-voltage distribution network[J].Journal of China Coal Society,2014,39(6):1184-1190.
ZHAO Jianwen, CHEN Jiali.One-mode component-based fault section location method for mine high-voltage power network[J].Industry and Mine Automation,2021,47(10):62-69.