陈鹏, 王成勇, 石开仪, 籍永华, 锁配蝶, 刘远丽
(六盘水师范学院 化学与材料工程学院, 贵州 六盘水553004)
摘要:汪家寨选煤厂煤泥含量大、灰分较高,在-0.5 mm粒级煤泥混合浮选工艺中出现了跑粗或细泥夹带现象。为了充分回收煤泥中的可燃体,利用煤泥筛分、浮沉试验及分步释放试验对该厂的煤泥性质进行了分析,采用正交试验设计方法分别对煤泥混合浮选、分级浮选与二次浮选3种流程进行试验研究。研究结果表明,二次浮选工艺最适宜该厂的煤泥浮选,可有效降低高灰细泥对精煤的影响,降低浮精灰分;该厂最佳浮选条件为煤泥入浮浓度为80 g/L、煤油耗量为240 g/t、2号油耗量为120 g/t,浮选完善指标为45.63,浮选精煤产率为69.93%,灰分为11.88%,各因素的主次关系为2号油耗量>煤泥入浮浓度>煤油耗量。
关键词:选煤厂; 煤泥浮选; 煤泥可浮性; 正交试验; 混合浮选; 分级浮选; 二次浮选; 精煤产率; 浮选完善指标
中图分类号:TD94
文献标志码:A
网络出版地址:http://kns.cnki.net/kcms/detail/32.1627.TP.20190122.1314.002.html
文章编号:1671-251X(2019)02-0091-05 DOI:10.13272/j.issn.1671-251x.2018050097
收稿日期:2018-05-30;
修回日期:2018-09-30;
责任编辑:张强。
基金项目:国家自然科学基金资助项目(51504134);贵州省重点支持学科项目(黔学位合字ZDXK[2016]24号);贵州省教育厅基金项目(黔教合人才团队字[2015]69号, 黔教合KY字[2017]263号,270号);贵州省“2011协同创新中心”建设项目(黔教合协同创新字[2016]02);六盘水师范学院硕士点培育项目(LPSSYSSDPY201702)。
作者简介:陈鹏(1987-),男,河北景县人,讲师,硕士,现主要从事矿物加工工程方面的教学与研究工作,E-mail:chenpeng8789@163.com。
引用格式:陈鹏,王成勇,石开仪,等.基于正交试验设计的煤泥浮选工艺试验研究[J].工矿自动化,2019,45(2):91-95.CHEN Peng, WANG Chengyong, SHI Kaiyi,et al.Experimental research on coal slime flotation process based on orthogonal test design[J].Industry and Mine Automation,2019,45(2):91-95.
CHEN Peng, WANG Chengyong, SHI Kaiyi, JI Yonghua, SUO Peidie, LIU Yuanli
(School of Chemistry and Materials Engineering, Liupanshui Normal University, Liupanshui 553004, China)
Abstract:Coal slime content and ash content is high in Wangjiazhai Coal Preparation Plant, in -0.5 mm graded coal slime mixed flotation process, it often appeared coarse or fine mud entrainment phenomenon. In order to fully recover combustible materials in the coal slime, the properties of coal slime in this plant were analyzed by slime sieving test, float and sink test and step release test, and three flotation processes of coal slime mixed flotation, classification flotation and secondary flotation were tested and studied by orthogonal experimental design method. The results show that the secondary flotation process is the most suitable for coal slime flotation in the plant, which can effectively reduce influence of high ash fine slime on cleaned coal and the ash content of the flotation cleaned coal. The optimum flotation conditions of the plant are coal slime concentration of 80 g/L, kerosene consumption of 240 g/t and No.2 oil consumption of 120 g/t, improved flotation index of 45.63, flotation cleaned coal yield of 69.93%, ash content of 11.88%, the primary and secondary relationship of each factor is No.2 oil consumption > coal slime flotation concentration > kerosene consumption.
Key words:coal preparation plant; coal slime flotation; floatability of coal slime; orthogonal test; mixed flotation; classification flotation; secondary flotation; cleaned coal yield; improved flotation index
随着我国煤炭加工技术的发展与进步,浮选作为煤泥分选最主要的方法也取得了飞速的发展[1-3]。然而,在-0.5 mm粒级煤泥混合浮选工艺中,往往会出现跑粗或细泥夹带现象[4-6],从而使企业利益受损或精煤被污染[7-8]。
贵州省六盘水市汪家寨选煤厂煤泥含量大,灰分较高,充分回收煤泥中的可燃体对提高该厂经济效益及保护环境意义重大。为了获取汪家寨选煤厂最佳的浮选工艺流程,结合该厂的实际情况,对其煤泥性质进行了充分分析,对煤泥开展了混合浮选、分级浮选[9]与二次浮选[10]试验研究,并对试验结果进行对比分析,认为二次浮选工艺流程适合汪家寨选煤厂煤泥浮选。
为了了解汪家寨选煤厂煤泥的粒度、密度组成情况,分别进行煤泥筛分试验和不同粒级煤泥浮沉试验,结果见表1、表2。
表1 煤泥粒度组成
Table 1 Particle size composition of coal slime
由表1可知,该煤泥中存在少量+0.5 mm颗粒且灰分较高,+0.25 mm粒级产率为35.95%,灰分为25.18%,而-0.25 mm粒级产率为64.05%,灰分为22.76%,粗颗粒灰分比细颗粒灰分高2.42%。此外,-0.045 mm粒级产率为10.17%,而灰分为30.81%,灰分明显高于其他粒级,在浮选过程中易造成细泥夹带,污染精煤。
表2 不同粒级煤泥密度组成
Table 2 Density composition of coal slime with different fraction size
由表2可知,该煤泥不能选出灰分小于9%的精煤,当灰分提高到11%时,各粒级浮物产率均在70%左右;而当灰分提高到12%时,浮物产率均在75%以上。
为了了解不同粒级煤泥的可浮性,对-0.5,+0.25,-0.25 mm三个粒级煤样的分别进行分步释放试验,结果如图1所示,并进行煤泥可浮性评定。当精煤灰分为11.50%时,分别对-0.5,+0.25,-0.25 mm三个粒级浮选精煤可燃体回收率进行计算,结果为69.67%,77.68%,83.96%。依据《煤粉(泥)可浮性评定方法》(GB/T 30047—2013)评定3个粒级煤泥的可浮性等级分别为中等可浮、中等可浮、易浮。
图1 煤泥分步释放试验结果
Fig.1 Results of step-by-step release experiment of coal slime
目前,国内选煤厂常用的煤泥浮选工艺流程有混合浮选、分级浮选与二次浮选,利用正交试验[11]分别探索3种工艺流程的最佳浮选效果。影响煤泥浮选效果的主要因素除了浮选工艺流程外,还有浮选入料浓度、起泡剂用量、捕收剂用量、充气量、转子转速等,通过浮选单因素探索试验,确定影响该厂煤泥的主要影响因素及水平,结果见表3。
煤泥混合浮选正交试验结果见表4,从表4可看出,浮选精煤产率均在80%左右,浮选精煤产率高,但浮选精煤灰分最低为14.46%,明显高于汪家寨选煤厂重选精煤灰分,浮选完善指标最高为40.53。若降低捕收剂用量,精煤产率会急剧下降。因此,煤泥混合浮选工艺不适合该厂煤泥浮选,故该正交试验不再做各因素主次顺序、最佳水平组合等的讨论与验证试验。
表3 影响煤泥浮选的主要影响因素及水平
Table 3 Main influencing factors and levels of coal slime flotation
表4 煤泥混合浮选正交试验结果
Table 4 Orthogonal test results of coal slime mixed flotation
以0.25 mm为分级粒度将煤泥分为+0.25 mm与-0.25 mm两个粒级,并分别进行分级浮选正交试验,最后计算总的精煤和尾煤的产率、灰分。正交试验结果见表5,由表5可知,浮选精煤产率均在74.77%以上,浮选精煤产率高,但浮选精煤灰分最低为13.50%,也明显高于汪家寨选煤厂重选精煤灰分,浮选完善指标最高为42.08。若降低捕收剂用量,精煤产率也会急剧下降。煤泥分级浮选也不适合该厂煤泥浮选,故该正交试验不再做各因素主次顺序、最佳水平组合等的讨论与验证试验。
煤泥二次浮选流程为首先对-0.5 mm粒级煤泥进行一次浮选,然后将浮选精煤以0.25 mm粒度进行分级,-0.25 mm粒级精煤进行二次浮选,二次浮选过程需补加水,不添加浮选药剂,二次浮选的精煤与一次浮选+0.25 mm粒级的精煤作为总精煤,二次浮选的尾煤与一次浮选的尾煤作为总尾煤。煤泥二次浮选正交试验结果见表6,由表中6号、8号试验结果可知,当浮选精煤灰分小于12%时,其产率在69%以上,浮选精煤产率高,且浮选完善指标最高在45.50以上。
由表6中数据计算可得到煤泥入浮浓度、煤油、2号油3个因素在3个不同水平时的考查指标(浮选完善指标)均值,煤泥入浮浓度均值为43.37,43.95,44.75;煤油耗量均值为43.84,43.92,44.30;2号油耗量均值为45.55,42.93,43.58。通过计算得到三者的极差分别为1.38,0.46,2.62,故各因素的主次顺序为2号油耗量>煤泥入浮浓度>煤油耗量,最优水平分别为100 g/L,240 g/t,120 g/t。经验证,最佳试验条件为煤泥入浮浓度为80 g/L、煤油耗量为240 g/t、2号油耗量为120 g/t。
表5 煤泥分级浮选正交试验结果
Table 5 Orthogonal test results of coal slime fractionation flotation
表6 煤泥二次浮选正交试验结果
Table 6 Orthogonal test results of coal slime secondary flotation
由表4—表6的试验结果对比可知:
(1) 煤泥混合浮选、分级浮选与二次浮选均能取得较高的精煤产率,但是混合浮选、分级浮选的煤泥浮选灰分偏高,不能满足实际需要。
(2) 煤泥二次浮选可以获得灰分小于12%的浮选精煤,最佳实验条件为煤泥入浮浓度为80 g/L、煤油耗量为240 g/t、2号油耗量为120 g/t,且精煤产率较高,而煤泥混合浮选与分级浮选若要获得灰分小于12%的浮选精煤,就会造成低灰物料的严重损失。
(3) 3种浮选工艺中浮选完善指标最高的为二次浮选,分级浮选次之,混合浮选最低。
(1) 煤泥混合浮选、分级浮选与二次浮选3种浮选工艺中,二次浮选工艺最适宜汪家寨选煤厂的煤泥浮选。
(2) 煤泥二次浮选最佳浮选条件为煤泥入浮浓度为80 g/L、煤油耗量为240 g/t、2号油耗量为120 g/t,浮选完善指标为45.63,浮选精煤产率为69.93%,灰分为11.88%。各因素的主次关系为2号油耗量>煤泥入浮浓度>煤油耗量。
(3) 煤泥二次浮选工艺可有效降低高灰细泥对精煤的影响,降低浮选精煤灰分。
参考文献:
[1] 倪超,谢广元,蒋兆桂,等.煤泥“2+2”分选工艺的问题分析及优化试验[J].煤炭学报,2013,38(11):2035-2041.
NI Chao, XIE Guangyuan, JIANG Zhaogui, et al. Problem analysis and optimization test for "2+2" coal slime separation process[J].Journal of China Coal Society,2013,38(11):2035-2041.
[2] 桂夏辉,邢耀文,李臣威,等.煤泥浮选过程中黏土矿物罩盖及其行为调控[J].煤炭科学技术,2016,44(6):175-181.
GUI Xiahui, XING Yaowen, LI Chenwei, et al. Clay coating and its behavior regulation in fine coal flotation[J]. Coal Science and Technology, 2016,44(6):175-181.
[3] 谢广元.选矿学[M].徐州:中国矿业大学出版社,2001.
[4] 郭德,张秀梅,吴大为,等.脱泥浮选工艺的实践与认识[J].煤炭学报,2000,25(4):208-211.
GUO De, ZHANG Xiumei, WU Dawei, et al. Practice and view of deshime floatation technology[J]. Journal of China Coal Society,2000,25(4):208-211.
[5] 桂夏辉,程敢,刘炯天,等.异质细泥在煤泥浮选中的过程特征[J].煤炭学报,2012,37(2):301-309.
GUI Xiahui, CHENG Gan, LIU Jiongtian,et al. Process characteristics of heterogeneous fine mud in the coal flotation[J]. Journal of China Coal Society,2012,37(2):301-309.
[6] 牛勇,王怀法.难浮煤泥浮选工艺研究[J].洁净煤技术,2011,17(3):6-8.
NIU Yong, WANG Huaifa. Research on flotation process of difficult-to-float coal[J].Clean Coal Technology,2011,17(2):6-8.
[7] 宋万军,蒋涵元,朱子祺.上榆泉选煤厂煤泥浮选提质的可行性研究[J].煤炭科学技术,2015,43(11):170-174.
SONG Wanjun, JIANG Hanyuan, ZHU Ziqi. Feasible study on coal slime flotation to improve coal quality and efficiency in Shangyuquan Coal Preparation Plant[J].Coal Science and Technology,2015,43(11):170-174.
[8] 宋云霞,魏昌杰.难浮煤泥二次浮选工艺研究与应用[J].煤炭工程,2017,49(7):93-96.
SONG Yunxia, WEI Changjie. Research and application of secondary flotation process for hard-to-float fine coal[J]. Coal Engineering,2017,49(7):93-96.
[9] 于伟,李振,刘莉君.细粒煤泥分级浮选试验探讨[J].矿山机械,2014,42(4):93-96.
YU Wei, LI Zhen, LIU Lijun.Test study on classified flotation of fine coal slime[J].Mining & Processing Equipment,2014,42(4):93-96.
[10] 张龙鑫,效妍,倪超.高灰难浮煤泥二次浮选试验研究[J].煤炭工程,2014,46(2):22-24.
ZHANG Longxin, XIAO Yan, NI Chao. Experimental study on secondary floatation of high ash difficult floated slime[J].Coal Engineering,2014,46(2):22-24.
[11] 刘炯天,樊民强.试验研究方法[J].徐州:中国矿业大学出版社,2011.
[12] 马超,王文宾,董连平,等.常村煤矿选煤厂煤泥浮选药剂制度优化研究[J].选煤技术,2018(2):27-29.
MA Chao,WANG Wenbin,DONG Lianping,et al.Optimization of the coal slime flotation reagent regime at Changcun Mine Coal Preparation Plant[J].Coal Preparation Technology,2018(2):27-29.
[13] 赵兵兵.煤泥浮选工艺影响因素研究[J].洁净煤技术,2018,24(2):31-34.
ZHAO Bingbing.Factors affecting flotation process of coal slime[J].Clean Coal Technology,2018,24(2):31-34.
[14] 任瑞晨,陈康,王国良,等.浮选尾煤脱泥再选及其可浮性评价[J].洁净煤技术,2017,23(6):32-37.
REN Ruichen,CHEN Kang,WANG Guoliang,et al.Recleaning of coal flotation tailings desliming and floatability evaluation[J].Clean Coal Technology,2017,23(6):32-37.