沿空留巷技术已相对成熟,其围岩变形具有多分区、强扰动、结构多样性特征[1-2]。留巷煤柱宽度对围岩应力集中程度、成巷速度、有效服务时间及巷道支护难度影响较大。目前对沿空留巷煤柱宽度留设的研究主要集中在煤柱强度、煤柱载荷与煤柱稳定性3个方面。刘新民[3]将现场实测和数值模拟相结合,探讨了沿空留巷条件下底板塑性区分布特征。佐江宏等[4]研究了不同因素对沿空留巷围岩运移机制的影响及相应支护对策。郑西贵等[5]以原位煤柱沿空留巷围岩控制为基础,建立了原位煤柱力学模型,并将其成功应用于煤柱宽度研究。何满潮等[6-7]从改善顶板应力环境、减小煤柱留设宽度的角度,提出了切顶卸压沿空留巷技术。王玉新[8]从直接顶和实体煤帮稳定性出发,确定了沿空留巷围岩大变形控制机理。辛家祥[9]采用多手段提高沿空留巷顶板及煤柱的稳定性,保证窄煤柱宽度的合理性。吴志刚等[10]分析了沿空留巷煤柱变形破坏特征及煤柱合理尺寸,确定了煤柱宽度是影响沿空留巷变形的最主要因素。霍丙杰等[11-12]研究了近距离煤层不同尺寸煤柱顶板结构及对下位煤层矿压特征及应力场分布的影响。
以上研究丰富并补充了沿空留巷技术的发展,但很少考虑岩石非均质性及损伤效应对煤柱留设宽度的影响。本文以国家能源集团神东煤炭集团乌兰木伦煤矿四盘区12煤沿空留巷为工程背景,通过单轴压缩实验验证了考虑岩石非均质性及损伤效应的合理性,根据理论分析及数值计算结果确定了煤柱留设宽度,并成功应用于工程现场,为同类型矿井沿空留巷煤柱合理宽度留设提供了参考。
乌兰木伦煤矿可采煤层为12,22,31煤,现主采12,31煤,平均埋深为150 m。12,22煤平均层间距为23 m,22,31煤平均层间距为33 m。12408工作面宽度为298 m,推进长度为2 387 m,煤层厚度为1.8~2.9 m;巷道宽度为5.4 m,高度为2.8 m,直接顶为砂岩,直接底为粉砂岩。12407工作面回采过程中,在煤柱边缘采用切顶方法切断煤柱边缘基本顶与采空区顶板之间的联系,保留1个煤柱,掘进12408工作面区段巷道,如图1所示。
图1 12煤沿空留巷布置
Fig.1 Arrange of gob-side entry retaining in No.12 coal
以巷道顶板结构及极限平衡理论为基础,煤柱宽度计算模型如图2所示,由此确定留设煤柱的塑性区宽度[13-15]至少为
图2 煤柱宽度计算模型
Fig.2 Calculation model of coal pillar width
(1)
式中:B1为煤柱在采空区侧的塑性区宽度;B2为煤柱安全系数;B3为帮锚杆深入煤体的有效长度;M为采高;ζ为侧压系数;f为煤体承载能力稳定时的应变系数;K为应力集中系数;λ为上覆岩层容重;H为巷道埋深;C为黏聚力;φ为煤体内摩擦角。
近距离煤层群开采时采动应力分布较复杂,为减小上位煤层沿空留巷煤柱对下位煤层开采的影响,在保证留巷稳定性的同时,应尽量减小煤柱宽度。因此,只考虑临近采空区侧塑性区宽度,并保证巷道处于应力降低区域,将现场数据(表1)代入式(1),可得12煤的煤柱塑性区宽度为8.89~9.13 m。一般地,塑性区宽度的1/3~1/2为应力降低区范围,即煤柱宽度不大于3 m时,煤柱承压能力较小,基本上会被压坏。设置煤柱宽度为3~5 m,以确保煤柱有较大的支撑力,且不会遭受较大的挤压力,达到降低巷道围岩压力的目的,维护巷道稳定性。
表1 理论计算参数
Table 1 Theoretical calculation parameters
参数值参数值K/m4φ/(°)37H/m460cotφ2.5λ/(kN·m-3)26C/MPa3M/m5.25ζ4.02B2/m3~6f0.83
岩石内部裂纹的产生和扩展为岩石损伤演化的过程,岩石损伤的演化导致了岩石宏观力学性质的变化。以砂岩为例,假设其力学性质服从Weibull分布[16-17]:
(2)
式中:E为岩石弹性模量;F(E)为岩石应力状态;m为均质度;为弹性极限内应力和应变比值的平均值。
采用与RFPA程序类似的弹性损伤本构关系,以最大拉伸破坏准则和摩尔-库仑准则对岩石应力状态进行判定[18]。
(3)
式中:F1为岩石单轴抗拉强度应力状态;σ1为拉应力;st0为岩石单轴抗拉强度;F2为岩石单轴抗压强度应力状态;σ2为剪应力;θ为岩石内摩擦角;sc0为岩石单轴抗压强度。
损伤变量可定义为
(4)
式中:εt0,εc0分别为最大拉伸主应变、最大压缩主应变;ε1,ε2分别为拉伸主应变、压缩主应变;n为常数,根据实验应力-应变曲线拟合得到,本文取2。
通过Matlab编程实现应力增量迭代求解,对模拟单轴压缩实验和实验室单轴压缩实验[19]结果进行对比,以验证岩石非均质性-损伤效应本构模型的合理性。实验岩样为砂岩,其力学性能参数见表2,其中σuc为极限抗压强度,μ为泊松比,EF为岩样破坏后的弹性模量。根据文献[20],在单轴压缩实验中,随着砂岩和煤损伤程度增加,其弹性模量逐渐减小,在应力-应变曲线峰值前砂岩和煤的弹性模量减小速率较低,在峰值后快速减小至几乎为零。
表2 砂岩力学性能参数
Table 2 Mechanical properties parameters of sandstone
参数值参数值σuc/MPa123θ/(°)36μ0.2EF/GPa6.0E/GPa60C/MPa32
由于细观参数与宏观参数的匹配性未知,所以需要大量数值计算不断修改细观参数以匹配实验数据[21]。根据岩样应力-应变曲线(图3)及破裂形态(图4),确定岩样均质度为11时,岩样应力-应变曲线和破裂形态与实验室实验结果具有较好的匹配性。随着均质度增加,岩样由弹塑性破坏向弹脆性破坏转变。
图3 岩样应力-应变曲线
Fig.3 Stress-strain curves of rock sample
岩样应力-应变曲线上A,B,C点分别对应弹性阶段、塑性阶段、破坏阶段,其弹性模量损伤及裂隙发育分别如图5、图6所示。可看出在弹性阶段,仅有少量强度较低的颗粒发生破坏,破裂点较离散;在塑性阶段,裂隙已开始发育,并出现贯通现象;在破坏阶段,剪切裂纹在岩样中心扩展、贯通,形成沿对角线方向的宏观剪切裂纹。模拟实验与实验室实验得到的破裂形态较一致,验证了岩石非均质性-损伤效应本构模型的合理性和正确性,且设置的均质度适用于煤岩[22-23]。弹性模量损伤劣化特征与裂隙发育基本一致。由图4可看出,标准试件下方未出现裂隙发育及弹性模量损伤劣化现象,原因是数值计算时将底边固定约束,即各方向位移为0。
图4 岩样破裂形态
Fig.4 Fracture form of rock sample
(a)A点
(b)B点
(c)C点
图5 岩样弹性模量损伤分布
Fig.5 Elastic modulus damage distribution of rock sample
(a)A点
(b)B点
(c)C点
图6 岩样裂隙发育
Fig.6 Fracture development of rock sample
沿空留巷煤柱的本质是将巷道和煤柱布置在采空区侧的应力降低区内。煤岩损伤过程为弹塑性损伤过程,弹性模量逐渐减小,塑性应变逐渐增大。煤柱虽处于塑性阶段,但仍具有一定的承载能力,对顶板有较小的支撑作用,当煤柱宽度较大时,其垂直应力将向应力集中区转移,不利于围岩稳定性。根据理论分析结果,煤柱宽度为3~5 m,因此分别讨论煤柱宽度为3,4,5,6 m时,煤柱损伤分布及巷道变形特征,以确定最佳煤柱宽度。
数值计算模型如图7所示。模型尺寸为400 m×130 m(长×宽),上覆岩层载荷为11.5 MPa,水平应力为6 MPa,底边施加固定约束,右侧为长200 m的采空区,左侧为沿空留巷煤柱。
图7 数值计算模型
Fig.7 Numerical calculation model
煤柱宽度不同时巷道顶底板、巷帮变形量如图8所示。可看出巷道底板变形量稍大于顶板,采动侧巷帮变形量大于非采动侧;采动侧巷帮变形量随煤柱宽度改变的变化量较小,这与文献[24]提出的留巷侧巷道变形属于“限定变形”(指承载体承担起大结构内覆岩运动产生的作用载荷,对巷道进行支承保护)较为一致,验证了考虑非均质性-损伤效应确定沿空留巷煤柱宽度的合理性及正确性;巷道整体变形量随煤柱宽度增大逐渐减小,但在煤柱宽度为6 m时发生突变,表明巷道稳定性随煤柱宽度增大先升高后降低。
图8 巷道变形量
Fig.8 Roadway deformations
煤柱周围损伤区分布如图9所示。可看出随着煤柱宽度增大,煤柱周围损伤区范围及损伤程度不断减小,损伤区由连续贯通向间隔分布随机转变:煤柱宽度为3 m时,损伤程度较高,破裂点基本贯通,此时需要高强度、高密度支护方式来维持煤柱稳定性,留巷难度较大;煤柱宽度为4 m时,煤柱整体劣化程度降低,但煤柱中心区域较为破碎,不利于后期巷道维护;煤柱宽度为5 m时,损伤程度进一步降低,煤柱中心区域虽有损伤发生,但破裂程度较低;煤柱宽度为6 m时,煤柱中心出现非连续弹性核区,使得巷道处于应力升高区,不利于巷道稳定。从整体损伤分布看,采空区侧大于实体煤侧。当巷道两侧采空后,煤柱损伤变量基本等于1,即完全失去承载能力,保证了下位煤层开采时不受沿空留巷煤柱影响。
(a)煤柱宽度为3 m
(b)煤柱宽度为4 m
(c)煤柱宽度为5 m
(d)煤柱宽度为6 m
(e)煤柱两侧采空后
图9 煤柱周围损伤区分布
Fig.9 Distribution of damage areas around coal pillar
由理论分析及数值计算结果可得,沿空留巷煤柱最佳宽度为5 m。
将乌兰木伦煤矿四盘区12煤沿空留巷煤柱宽度设置为5 m,进行现场工业性试验。在工作面前后方各80 m范围内设置多组测站,监测巷道顶底板及两帮变形量,结果如图10所示。可看出采动影响下工作面前后方巷道变形量差异较大,工作面前方巷道变形量比后方少1个数量级;巷道变形不对称,采动侧巷帮变形量大于非采动侧,顶板变形量基本上大于底板;工作面前方50 m范围内巷道变形量较50 m后大,但整体不大,工作面后方60 m后巷道变形量基本不变,顶板覆岩移动变形基本稳定。监测结果验证了沿空留巷煤柱宽度合理,配合相应锚杆支护可有效抑制巷道围岩变形。
(a)工作面前方
(b)工作面后方
图10 巷道变形量监测结果
Fig.10 Monitoring results of roadway deformations
(1)结合乌兰木伦煤矿现场数据,根据理论分析得出12煤沿空留巷煤柱宽度宜设置为3~5 m。
(2)岩石非均质性-损伤效应模型可较好地反映岩石破裂特征:弹性阶段仅有少量强度较低的颗粒发生破坏;塑性阶段裂隙已开始明显发育,并出现贯通现象;破坏阶段剪切裂纹在岩样中心扩展、贯通,形成沿对角线方向的宏观剪切裂纹。
(3)数值计算结果表明:随着煤柱宽度增大,巷道整体变形量先减小后增大,在煤柱宽度为6 m时发生突变,煤柱周围损伤区域范围及损伤程度不断减小,且整体损伤分布采空区侧大于实体煤侧。
(4)结合理论分析及数值计算结果,确定沿空留巷煤柱宽度为5 m,并应用于工程现场。监测结果表明工作面前方巷道整体变形量不大,工作面后方60 m后顶板覆岩移动变形基本稳定,验证了沿空留巷煤柱宽度留设的合理性。
(5)对于沿空留巷不同煤柱高度下应力与损伤变量随应变的变化趋势有待进一步研究。
[1] 谢生荣,张晴,陈冬冬,等.沿空留巷顶板非对称锚固深梁承载结构模型研究及应用[J].采矿与安全工程学报,2020,37(2):298-310.
XIE Shengrong,ZHANG Qing,CHEN Dongdong,et al.Research and application of asymmetric anchorage deep beam bearing structure model in gob-side entry retaining roof[J].Journal of Mining & Safety Engineering,2020,37(2):298-310.
[2] 汤建泉,霍雪峰,杨华富,等.沿空切顶成巷段巷道围岩变形规律研究[J].矿业安全与环保,2020,47(1):40-44.
TANG Jianquan,HUO Xuefeng,YANG Huafu,et al.Study on deformation law of surrounding rock in gob-side entry retaining formed by roof fracturing[J].Mining Safety & Environmental Protection,2020,47(1):40-44.
[3] 刘新民.沿空留巷采煤对底板扰动破坏深度影响[J].煤田地质与勘探,2016,44(2):79-84.
LIU Xinmin.Influence of mining in retained gateway along goaf on the disturbance and destruction depth of floor[J].Coal Geology & Exploration,2016,44(2):79-84.
[4] 佐江宏,陈晓祥.窄煤柱工作面沿空留巷围岩大变形控制技术及应用[J].河南理工大学学报(自然科学版),2019,38(2):27-33.
ZUO Jianghong,CHEN Xiaoxiang.Large deformation control technology and its application of surrounding rock along gob-side entry in narrow coal pillar face[J].Journal of Henan Polytechnic University(Natural Science),2019,38(2):27-33.
[5] 郑西贵,安铁梁,郭玉,等.原位煤柱沿空留巷围岩控制机理及工程应用[J].采矿与安全工程学报,2018,35(6):1091-1098.
ZHENG Xigui,AN Tieliang,GUO Yu,et al.Surrounding rock control mechanism and engineering application of in-situ coal pillar in gob-side entry retaining[J].Journal of Mining & Safety Engineering,2018,35(6):1091-1098.
[6] 何满潮,陈上元,郭志飚,等.切顶卸压沿空留巷围岩结构控制及其工程应用[J].中国矿业大学学报,2017,46(5):959-969.
HE Manchao,CHEN Shangyuan,GUO Zhibiao,et al.Control of surrounding rock structure for gob-side entry retaining by cutting roof to release pressure and its engineering application[J].Journal of China University of Mining & Technology,2017,46(5):959-969.
[7] 何满潮,高玉兵,杨军,等.无煤柱自成巷聚能切缝技术及其对围岩应力演化的影响研究[J].岩石力学与工程学报,2017,36(6):1314-1325.
HE Manchao,GAO Yubing,YANG Jun,et al.An energy-gathered roof cutting technique in no-pillar mining and its impact on stress variation in surrounding rocks[J].Chinese Journal of Rock Mechanics and Engineering,2017,36(6):1314-1325.
[8] 王玉新.沿空留巷巷道底板破坏规律分析[J].能源与环保,2019,41(12):143-146.
WANG Yuxin.Analysis of failure law of floor in roadway along goaf[J].China Energy and Environmental Protection,2019,41(12):143-146.
[9] 辛家祥.复杂条件沿空留巷充填液压支架设计研究[J].煤矿开采,2019,24(1):48-52.
XIN Jiaxiang.Backfill hydraulic support designing of gob side entry retaining with complicated situation[J].Coal Mining Technology,2019,24(1):48-52.
[10] 吴志刚,魏斌.浅埋深沿空留巷充填体载荷估算方法探讨与实践[J].煤矿开采,2018,23(6):49-51.
WU Zhigang,WEI Bin.Practice and discussion of filling body loading estimation method of gob side entry retaining in shallow[J].Coal Mining Technology,2018,23(6):49-51.
[11] 霍丙杰,范张磊,谢伟,等.浅埋近距离房式采空区下应力场分析及动压机理研究[J].煤炭科学技术,2019,47(1):179-186.
HUO Bingjie,FAN Zhanglei,XIE Wei,et al.Stress field analysis and study on dynamic pressure mechanism under goaf of shallow depth and closed distance room and pillar mining[J].Coal Science and Technology,2019,47(1):179-186.
[12] 霍丙杰,范张磊,谢伟,等.浅埋房式采空区覆岩结构及对下位煤层开采的影响[J].安全与环境学报,2018,18(2):468-473.
HUO Bingjie,FAN Zhanglei,XIE Wei,et al.Overburdened structure frames of the room mining goaf in the shallow coal seam and its impact on the lower level mining[J].Journal of Safety and Environment,2018,18(2):468-473.
[13] 石崇,杨文坤,沈俊良,等.动压巷道区段煤柱合理留设宽度研究[J].煤炭科学技术,2019,47(7):108-114.
SHI Chong,YANG Wenkun,SHEN Junliang,et al.Study on reasonable width of coal pillar in dynamic pressure roadway[J].Coal Science and Technology,2019,47(7): 108-114.
[14] 王开,弓培林,张小强,等.复采工作面过冒顶区顶板断裂特征及控制研究[J].岩石力学与工程学报,2016,35(10):2080-2088.
WANG Kai,GONG Peilin,ZHANG Xiaoqiang,et al.Characteristics and control of roof fracture in caving zone for residual coal mining face[J].Chinese Journal of Rock Mechanics and Engineering,2016,35(10):2080-2088.
[15] 王晓振,鞠金峰,许家林.神东浅埋综采面末采段让压开采原理及应用[J].采矿与安全工程学报,2012,29(2):151-156.
WANG Xiaozhen,JU Jinfeng,XU Jialin.Theory and applicable of yield mining at ending stage of fully-mechanized face in shallow seam at Shendong mine area[J].Journal of Mining & Safety Engineering,2012,29(2):151-156.
[16] 孙娈娈,王中华,孙燕青,等.煤层底板破坏流固耦合数值模拟[J].煤田地质与勘探,2013,41(3):55-58.
SUN Luanluan,WANG Zhonghua,SUN Yanqing,et al.Fluid-solid coupling numerical simulation of coal seam floor failure[J].Coal Geology & Exploration,2013,41(3):55-58.
[17] 张国恩,解振华,史洪恺.过空巷群支护技术与矿压显现规律特征分析[J].煤矿安全,2020,51(11):248-252.
ZHANG Guoen,XIE Zhenhua,SHI Hongkai.Support technology of passing through empty roadway group and mine pressure characteristics analysis[J].Safety in Coal Mines,2020,51(11):248-252.
[18] 秦庆词,李克钢,杨宝威,等.岩石全应力-应变过程关键特征点损伤特征分析[J].岩土力学,2018,39(增刊2):14-24.
QIN Qingci,LI Kegang,YANG Baowei,et al.Analysis of damage characteristics of key characteristic points in rock complete stress-strain process[J].Rock and Soil Mechanics,2018,39(S2):14-24.
[19] 李术才,许新骥,刘征宇,等.单轴压缩条件下砂岩破坏全过程电阻率与声发射响应特征及损伤演化[J].岩石力学与工程学报,2014,33(1):14-23.
LI Shucai,XU Xinji,LIU Zhengyu,et al.Electrical resistivity and acoustic emission response characteristics and damage evolution of sandstone during whole process of uniaxial compression[J].Chinese Journal of Rock Mechanics and Engineering,2014,33(1):14-23.
[20] 王超,袁旭朋,汪开旺.煤和砂岩加载弹塑性损伤本构方程[J].煤田地质与勘探,2017,45(2):105-111.
WANG Chao,YUAN Xupeng,WANG Kaiwang.Constitutive equation of loading-induced elastic-plastic damage of coal and sandstone[J].Coal Geology & Exploration,2017,45(2):105-111.
[21] 李守巨,李德,武力,等.非均质岩石单轴压缩试验破坏过程细观模拟及分形特性[J].煤炭学报,2014,39(5):849-854.
LI Shouju,LI De,WU Li,et al.Meso-simulation and fractal characteristics for uniaxial compression test of inhomogeneous rock[J].Journal of China Coal Society,2014,39(5):849-854.
[22] 赵永川,杨天鸿,肖福坤,等.西部弱胶结砂岩循环载荷作用下塑性应变能变化规律[J].煤炭学报,2015,40(8):1813-1819.
ZHAO Yongchuan,YANG Tianhong,XIAO Fukun,et al.The variation law of plastic strain energy of western weak cemented sandstone during cyclic loading experiment[J].Journal of China Coal Society,2015,40(8):1813-1819.
[23] 梁冰,王维华,李宏艳,等.基于损伤变量的煤柱合理留设试验研究[J].安全与环境学报,2013,13(5):179-182.
LIANG Bing,WANG Weihua,LI Hongyan,et al.Experiment study on the regularity of the coal pillar residua based on the damage variables[J].Journal of Safety and Environment,2013,13(5):179-182.
[24] 文志杰,蒋宇静,宋振骐,等.沿空留巷围岩结构灾变系统及控制力学模型研究[J].湖南科技大学学报(自然科学版),2011,26(3):12-16.
WEN Zhijie,JIANG Yujing,SONG Zhenqi,et al.Study on mechanical model and surrounding rock catastrophe system of gob-side retaining entry[J].Journal of Hunan University of Science & Technology(Natural Science Edition),2011,26(3):12-16.
XIE Zhenhua, MA Tianhu, FAN Zhanglei,et al.Research on the coal pillar width of gob-side entry retaining under the damage effect of heterogeneous rock[J].Industry and Mine Automation,2021,47(8):56-62.