宁杉,吕嘉锟,纪海玉,张琰岽
(山东科技大学 矿业与安全工程学院,山东 青岛 266590)
摘要:针对目前的煤柱变形研究大都将煤柱处理为连续体,没有考虑煤柱中广泛存在的结构面破坏及失稳问题,采用3DEC软件对不同结构面倾角及间距下煤柱最大主应力及变形量进行了数值模拟,结果表明:煤柱最大主应力随结构面间距增大而增大,随结构面倾角增大而减小;随着结构面倾角的增大,结构面间距对煤柱最大主应力的影响越来越小;煤柱变形量随结构面间距增大而逐渐减小,随结构面倾角增大而增大;当结构面间距小于1.5 m,结构面倾角大于45°时,煤柱变形量显著增大。
关键词:煤炭开采;煤柱变形;结构面倾角;结构面间距;最大主应力
随着大型综掘、综采机械化程度的大幅度提高,留煤柱开采尤其是窄小煤柱开采逐渐得到推广,在一定程度上提高了煤炭资源采出率,但同时带来一系列潜在安全问题及事故[1-5]。何耀宇等[6]采用FLAC3D对煤柱拉伸和压剪2种破坏类型进行研究;郑西贵等[7]利用FLAC3D对掘采过程中沿空掘巷小煤柱应力分布进行研究;许兴亮等[8]对煤柱变形及中性面进行研究。这些研究通常建立在连续介质力学基础上,将煤柱处理为连续体,没有考虑在煤柱中广泛存在的结构面破坏及失稳[9-11]。实际上煤柱内部包含复杂的结构面网络,在形态和结构上呈现出强烈的不连续性[12-13],因此,本文利用3DEC数值模拟软件[14]进行模拟,分析了不同结构面倾角及间距下煤柱变形破坏特征,揭示了煤柱受结构面影响的规律,可为含有结构面煤柱的支护提供理论参考。
山东枣庄某矿东十采区3上1007工作面所在煤层为3上煤层,地面标高+35.44 m,工作面煤层底板标高-540.0 m。工作面走向长724 m,倾向长175 m,煤层平均厚度为5.5 m,倾角为5~9°。工作面内赋存13条断层,内生裂隙较发育,对工作面回采造成较大影响。煤层综合柱状图如图1所示。
图1 煤层综合柱状图
Fig.1 Comprehensive bar chart of coal seam
根据实际地质情况及3上1007工作面布置方式建立数值计算模型。模型长×宽×高为90 m×20 m×90 m;煤柱位于模型中部,高度为4.5 m,宽度为5 m,煤柱两侧分别为巷道及采空区;各岩层及结构面采用Mohr-Coulomb准则。煤柱内结构面分布方式如图2所示,其中α,l分别为结构面倾角、间距。
图2 煤柱内结构面分布方式
Fig.2 Distribution mode of structural plane in coal pillar
为获得不同结构面倾角及间距对煤柱变形的影响规律,设置结构面倾角分别为15,30,45,60,75°,结构面间距分别为0.5,1.0,1.5,2.0,2.5,3.0 m,以结构面倾角及间距2个因素进行正交设计。
模型上部边界为自由边界,由巷道埋深及覆岩平均密度计算可得上部边界载荷为15 MPa,模型下表面固定,两侧面采用应力边界进行固定。模型中各煤岩层力学参数见表1,煤柱内结构面力学参数见表2。
表1 煤岩层力学参数
Table 1 Mechanical parameters of coal-rock seam
表2 煤柱内结构面力学参数
Table 2 Mechanical parameters of structural plane in coal pillar
模拟得到不同结构面倾角下煤柱最大主应力随结构面间距变化曲线,如图3所示。可看出煤柱最大主应力随结构面间距增大而增大,且增大幅度随结构面倾角的增大而减小;当结构面间距不大于1 m,不同结构面倾角下煤柱最大主应力差别较小;当结构面间距大于1 m,结构面倾角为15,30°时,煤柱最大主应力变化幅度较大,结构面倾角不小于45°时,煤柱最大主应力变化幅度较小。
图3 不同结构面倾角下煤柱最大主应力随结构面间距变化曲线
Fig.3 Curves of the maximum principal stress varying with spacing of structural plane under different inclinations of structural plane
图3中不同结构面倾角时煤柱最大主应力曲线有明显的线性关系,因此求出各曲线斜率,得到斜率随结构面倾角变化曲线,如图4所示。可看出随着结构面倾角的增大,曲线斜率逐渐减小,表明煤柱最大主应力随结构面间距变化的幅度越来越小,即结构面间距对煤柱最大主应力的影响越来越小。
图4 斜率随结构面倾角变化曲线
Fig.4 Slope curve varying with inclination of structural plane
为研究不同结构面倾角及间距下煤柱变形规律,在模型开挖后布置测点对煤柱水平位移和垂直位移进行监测,结果如图5所示。可看出在结构面倾角不变的情况下,煤柱变形量随结构面间距增大而逐渐减小;当结构面间距大于1.5 m时,煤柱变形量变化幅度较小;当结构面间距小于1.5 m时,煤柱变形量变化幅度显著增大;在结构面间距不变的情况下,煤柱变形量随结构面倾角增大而增大;随着煤柱内结构面倾角增大,煤柱变形量变化幅度递增;当结构面间距小于1.5 m,结构面倾角大于45°时,煤柱变形量急剧增大。
(a) 煤柱水平位移
(b) 煤柱垂直位移
图5 不同结构面倾角及间距下煤柱变形曲线
Fig.5 Deformation curves of coal pillar under different inclination and spacing of structural plane
(1) 煤柱内最大主应力随结构面间距增大而增大,随结构面倾角增大而减小;随着结构面倾角的增大,结构面间距对煤柱最大主应力的影响越来越小。
(2) 煤柱变形量随结构面间距增大而逐渐减小,随结构面倾角增大而增大;当结构面间距小于1.5 m,结构面倾角大于45°时,煤柱变形量显著增大。
参考文献(References):
[1] 张科学,姜耀东,张正斌,等.大煤柱内沿空掘巷窄煤柱合理宽度的确定[J].采矿与安全工程学报,2014,31(2):255-262.
ZHANG Kexue,JIANG Yaodong,ZHANG Zhengbin,et al.Determining the reasonable width of narrow pillar of roadway in gob entry driving in the large pillar[J].Journal of Mining and Safety Engineering,2014,31(2):255-262.
[2] 马志涛,张云月,张梦寒,等.断层煤柱尺寸对地表建筑物影响分析[J].山东科技大学学报(自然科学版),2016,35(2):44-49.
MA Zhitao,ZHANG Yunyue,ZHANG Menghan,et al.Damage analysis of fault pillars of different sizes to surface buildings[J].Journal of Shandong University of Science and Technology(Natural Science),2016,35(2):44-49.
[3] 王德超,李术才,王琦,等.深部厚煤层综放沿空掘巷煤柱合理宽度试验研究[J].岩石力学与工程学报,2014,33(3):539-548.
WANG Dechao,LI Shucai,WANG Qi,et al.Experimental study of reasonable coal pillar width in fully mechanized top coal caving face of deep thick coal seam[J].Chinese Journal of Rock Mechanics and Engineering,2014,33(3):539-548.
[4] 卜滕滕,宁建国,王俊,等.深井厚煤层综放沿空掘巷煤柱合理尺寸研究[J].山东科技大学学报(自然科学版),2017,36(6):109-116.
BU Tengteng,NING Jianguo,WANG Jun,et al.Study on reasonable size of coal pillar in fully-mechanized gob-side entry driving of thick coal seam in deep mine[J].Journal of Shandong University of Science and Technology(Natural Science),2017,36(6):109-116.
[5] 朱维申,赵成龙,周浩,等.当前岩石力学研究中若干关键问题的思考与认识[J].岩石力学与工程学报,2015,34(4):649-658.
ZHU Weishen,ZHAO Chenglong,ZHOU Hao,et al.Discussion on several key issues in current rock mechanics[J].Chinese Journal of Rock Mechanics and Engineering,2015,34(4):649-658.
[6] 何耀宇,宋选民,赵金昌.复杂受压条件下不同尺寸煤柱破坏倾向性研究[J].采矿与安全工程学报,2015,32(4):592-596.
HE Yaoyu,SONG Xuanmin,ZHAO Jinchang.A study on damage proneness of coal pillars of different sizes under complicated compression conditions[J].Journal of Mining and Safety Engineering,2015,32(4):592-596.
[7] 郑西贵,姚志刚,张农.掘采全过程沿空掘巷小煤柱应力分布研究[J].采矿与安全工程学报,2012,29(4):459-465.
ZHENG Xigui,YAO Zhigang,ZHANG Nong.Stress distribution of coal pillar with gob-side entry driving in the process of excavation and mining[J].Journal of Mining and Safety Engineering,2012,29(4):459-465.
[8] 许兴亮,李俊生,田素川,等.沿空掘巷小煤柱变形分析与中性面稳定性控制技术[J].采矿与安全工程学报,2016,33(3):481-485.
XU Xingliang,LI Junsheng,TIAN Suchuan,et al.Deformation analysis and neutral plane stability control technology of small coal pillar with gob-side entry[J].Journal of Mining and Safety Engineering,2016,33(3):481-485.
[9] 张培森,赵亚鹏,张明光,等.大倾角断层下煤层开采诱发顶底板及附近含水层应力变化规律的试验研究[J].山东科技大学学报(自然科学版),2017,36(6):60-65.
ZHANG Peisen,ZHAO Yapeng,ZHANG Mingguang,et al.Experimental study on stress variation law of roof,floor and nearby aquifer induced by coal seam mining under large dip fault[J].Journal of Shandong University of Science and Technology(Natural Science),2017,36(6):60-65.
[10] 朱焕春,RICHARD B,PATRICK A.节理岩体数值计算方法及其应用(一):方法与讨论[J].岩石力学与工程学报,2004,23(20):3444-3449.
ZHU Huanchun,RICHARD B,PATRICK A.Numerical methods and application for jointed rock mass,part 1: approaches and discussions[J].Chinese Journal of Rock Mechanics and Engineering,2004,23(20):3444-3449.
[11] 朱焕春,PATRICK A,钟辉亚.节理岩体数值计算方法及其应用(二):工程应用[J].岩石力学与工程学报,2005,24(1):89-96.
ZHU Huanchun,PATRICK A,ZHONG Huiya.Numerical modelling methods and application in jointed rock mass,part 2:application for engineering practice[J].Chinese Journal of Rock Mechanics and Engineering,2005,24(1):89-96.
[12] 刘泉声,雷广峰,彭星新.深部裂隙岩体锚固机制研究进展与思考[J].岩石力学与工程学报,2016,35(2):312-332.
LIU Quansheng,LEI Guangfeng,PENG Xingxin.Advance and review on the anchoring mechanism in deep fractured rock mass[J].Chinese Journal of Rock Mechanics and Engineering,2016,35(2):312-332.
[13] 谭云亮.矿山压力与岩层控制[M].北京:煤炭工业出版社,2011.
[14] 吴鑫,伯志革,杨凯,等.3DEC数值模拟方法在巷道支护优化设计中的应用[J].矿业安全与环保,2013,40(2):73-76.
WU Xin,BO Zhige,YANG Kai,et al.Application of 3DEC numerical simulation method in roadway support optimization design[J].Mining Safety and Environmental Protection,2013,40(2):73-76.
NING Shan, LYU Jiakun, JI Haiyu, ZHANG Yandong
(College of Mining and Safety Engineering,Shandong University of Science and Technology,Qingdao 266590,China)
Abstract:For problem that coal pillar is treated as a continuum in most of the coal pillar deformation studies without considering structural plane damage and instability in coal pillar,numerical simulation of the maximum principal stress and deformation of coal pillar under different inclinations and spaces of structural plane were carried out by use of 3DEC software. The results show that the maximum principal stress of coal pillar increases with increase of space of structural plane and decreases with increase of inclination of structural plane; influence of space of structural plane on the maximum principal stress of coal pillar decreases with increase of inclination of structural plane; coal pillar deformation decreases with increase of space of structural plane and increases with increase of inclination of structural plane; coal pillar deformation increases significantly when space of structural plane is less than 1.5 m and inclination of structural plane is more than 45°.
Key words:coal mining; coal pillar deformation; inclination of structural plane; space of structural plane; the maximum principal stress
文章编号:1671-251X(2018)05-0091-04
DOI:10.13272/j.issn.1671-251x.2017120040
中图分类号:TD322
文献标志码:A
网络出版地址:http://kns.cnki.net/kcms/detail/32.1627.tp.20180427.0907.002.html
收稿日期:2017-12-15;
修回日期:2018-04-20;
责任编辑:盛男。
基金项目:国家自然科学基金资助项目(51379116,51574156)。
作者简介:宁杉(1993-),男,山东枣庄人,硕士研究生,主要研究方向为岩石力学、矿山压力与岩层控制,E-mail:ningshan1993@foxmail.com。
引用格式:宁杉,吕嘉锟,纪海玉,等.不同结构面倾角及间距下煤柱变形分析[J].工矿自动化,2018,44(5):91-94.
NING Shan,LYU Jiakun,JI Haiyu,et al.Coal pillar deformation analysis under different inclinations and spaces of structural plane[J].Industry and Mine Automation,2018,44(5):91-94.